Abstract

A concept of an integrated optical isolator is presented which uses the TM0 mode propagating perpendicular to the in-plane the magnetization of a planar magnetooptical waveguide. The cut-off thickness of the waveguide depends on the propagation direction. If the magnetic film has a strong Faraday rotation and is weakly guiding, the cut-off thicknesses for forward and backward propagation differ markedly. Operating close to cut-off yields a large difference between coupling efficiencies to the waveguide for forward and backward propagation.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882–888 (1974).
    [CrossRef]
  2. K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
    [CrossRef]
  3. E. Pross, W. Tolksdorf, H. Dammann, “Yttrium Iron Garnet Single-Mode Buried Channel Waveguides for Waveguide Isolators,” Appl. Phys. Lett. 52, 682–684 (1988).
    [CrossRef]
  4. K. Ando, T. Okoshi, N. Koshizuka, “Waveguide Magneto-Optic Isolator Fabricated by Laser Annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
    [CrossRef]
  5. R. Wolfe, V. J. Fratello, M. McGlashan-Powell, “Elimination of Birefringence in Garnet Films for Magneto-Optic Waveguide Devices,” Appl. Phys. Lett. 51, 1221–1223 (1987).
    [CrossRef]
  6. H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
    [CrossRef]
  7. F. Auracher, H. H. Witte, “A New Design for an Integrated Optical Isolator,” Opt. Commun. 13, 435–438 (1975).
    [CrossRef]
  8. W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
    [CrossRef]
  9. J. P. Krumme, P. Hansen, “A New Type of Magnetic Domain Wall in Nearly Compensated Ga-Substituted YIG,” Appl. Phys. Lett. 22, 312–314 (1973).
    [CrossRef]
  10. R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
    [CrossRef]
  11. T. Hibiya, Y. Morishige, J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jap. J. Appl. Phys. 24, 1316–1319 (1985).
    [CrossRef]

1988 (2)

E. Pross, W. Tolksdorf, H. Dammann, “Yttrium Iron Garnet Single-Mode Buried Channel Waveguides for Waveguide Isolators,” Appl. Phys. Lett. 52, 682–684 (1988).
[CrossRef]

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide Magneto-Optic Isolator Fabricated by Laser Annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

1987 (2)

R. Wolfe, V. J. Fratello, M. McGlashan-Powell, “Elimination of Birefringence in Garnet Films for Magneto-Optic Waveguide Devices,” Appl. Phys. Lett. 51, 1221–1223 (1987).
[CrossRef]

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

1986 (1)

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

1985 (3)

K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
[CrossRef]

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

T. Hibiya, Y. Morishige, J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jap. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

1975 (1)

F. Auracher, H. H. Witte, “A New Design for an Integrated Optical Isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

1974 (1)

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882–888 (1974).
[CrossRef]

1973 (1)

J. P. Krumme, P. Hansen, “A New Type of Magnetic Domain Wall in Nearly Compensated Ga-Substituted YIG,” Appl. Phys. Lett. 22, 312–314 (1973).
[CrossRef]

Ando, K.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide Magneto-Optic Isolator Fabricated by Laser Annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
[CrossRef]

Auracher, F.

F. Auracher, H. H. Witte, “A New Design for an Integrated Optical Isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Celler, G. K.

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Dammann, H.

E. Pross, W. Tolksdorf, H. Dammann, “Yttrium Iron Garnet Single-Mode Buried Channel Waveguides for Waveguide Isolators,” Appl. Phys. Lett. 52, 682–684 (1988).
[CrossRef]

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

Dillon, J. F.

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Dorsey, C. S.

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Fratello, V. J.

R. Wolfe, V. J. Fratello, M. McGlashan-Powell, “Elimination of Birefringence in Garnet Films for Magneto-Optic Waveguide Devices,” Appl. Phys. Lett. 51, 1221–1223 (1987).
[CrossRef]

Hansen, P.

J. P. Krumme, P. Hansen, “A New Type of Magnetic Domain Wall in Nearly Compensated Ga-Substituted YIG,” Appl. Phys. Lett. 22, 312–314 (1973).
[CrossRef]

Hegarty, J.

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Hibiya, T.

T. Hibiya, Y. Morishige, J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jap. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Koshizuka, N.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide Magneto-Optic Isolator Fabricated by Laser Annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
[CrossRef]

Krumme, J. P.

J. P. Krumme, P. Hansen, “A New Type of Magnetic Domain Wall in Nearly Compensated Ga-Substituted YIG,” Appl. Phys. Lett. 22, 312–314 (1973).
[CrossRef]

Luther, L. C.

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Makimoto, T.

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882–888 (1974).
[CrossRef]

McGlashan-Powell, M.

R. Wolfe, V. J. Fratello, M. McGlashan-Powell, “Elimination of Birefringence in Garnet Films for Magneto-Optic Waveguide Devices,” Appl. Phys. Lett. 51, 1221–1223 (1987).
[CrossRef]

Morishige, Y.

T. Hibiya, Y. Morishige, J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jap. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Nakashima, J.

T. Hibiya, Y. Morishige, J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jap. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Okoshi, T.

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide Magneto-Optic Isolator Fabricated by Laser Annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

Okuda, T.

K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
[CrossRef]

Pross, E.

E. Pross, W. Tolksdorf, H. Dammann, “Yttrium Iron Garnet Single-Mode Buried Channel Waveguides for Waveguide Isolators,” Appl. Phys. Lett. 52, 682–684 (1988).
[CrossRef]

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

Rabe, G.

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

Strocka, B.

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

Takeda, N.

K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
[CrossRef]

Tolksdorf, W.

E. Pross, W. Tolksdorf, H. Dammann, “Yttrium Iron Garnet Single-Mode Buried Channel Waveguides for Waveguide Isolators,” Appl. Phys. Lett. 52, 682–684 (1988).
[CrossRef]

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

Tolle, H. J.

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

Trimble, L. E.

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Willich, P.

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

Witte, H. H.

F. Auracher, H. H. Witte, “A New Design for an Integrated Optical Isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Wolfe, R.

R. Wolfe, V. J. Fratello, M. McGlashan-Powell, “Elimination of Birefringence in Garnet Films for Magneto-Optic Waveguide Devices,” Appl. Phys. Lett. 51, 1221–1223 (1987).
[CrossRef]

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

Yamamoto, S.

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882–888 (1974).
[CrossRef]

Zinke, M.

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

Appl. Phys. Lett. (6)

E. Pross, W. Tolksdorf, H. Dammann, “Yttrium Iron Garnet Single-Mode Buried Channel Waveguides for Waveguide Isolators,” Appl. Phys. Lett. 52, 682–684 (1988).
[CrossRef]

K. Ando, T. Okoshi, N. Koshizuka, “Waveguide Magneto-Optic Isolator Fabricated by Laser Annealing,” Appl. Phys. Lett. 53, 4–6 (1988).
[CrossRef]

R. Wolfe, V. J. Fratello, M. McGlashan-Powell, “Elimination of Birefringence in Garnet Films for Magneto-Optic Waveguide Devices,” Appl. Phys. Lett. 51, 1221–1223 (1987).
[CrossRef]

H. Dammann, E. Pross, G. Rabe, W. Tolksdorf, M. Zinke, “Phase Matching in Symmetrical Single-Mode Magneto-Optic Waveguides by Application of Stress,” Appl. Phys. Lett. 49, 1755–1757 (1986).
[CrossRef]

J. P. Krumme, P. Hansen, “A New Type of Magnetic Domain Wall in Nearly Compensated Ga-Substituted YIG,” Appl. Phys. Lett. 22, 312–314 (1973).
[CrossRef]

R. Wolfe, J. Hegarty, J. F. Dillon, L. C. Luther, G. K. Celler, L. E. Trimble, C. S. Dorsey, “Thin-Film Waveguide Magneto-Optic Isolator,” Appl. Phys. Lett. 46, 817–819 (1985).
[CrossRef]

J. Appl. Phys. (2)

S. Yamamoto, T. Makimoto, “Circuit Theory for a Class of Anisotropic and Gyrotropic Thin-Film Optical Waveguides and Design of Nonreciprocal Devices for Integrated Optics,” J. Appl. Phys. 45, 882–888 (1974).
[CrossRef]

K. Ando, N. Takeda, T. Okuda, N. Koshizuka, “Waveguide Mode Conversion by Magnetic Linear Birefringence of Bi-Substituted Iron Garnet Films Titled from (111),” J. Appl. Phys. 57, 718–722 (1985).
[CrossRef]

J. Cryst. Growth (1)

W. Tolksdorf, H. Dammann, E. Pross, B. Strocka, H. J. Tolle, P. Willich, “Growth of Yttrium Iron Garnet Multi-Layers by Liquid Phase Epitaxy for Single Mode Magneto-Optic Waveguides,” J. Cryst. Growth 83, 15–22 (1987).
[CrossRef]

Jap. J. Appl. Phys. (1)

T. Hibiya, Y. Morishige, J. Nakashima, “Growth and Characterization of Liquid-Phase Epitaxial Bi-Substituted Iron Garnet Films for Magneto-Optic Application,” Jap. J. Appl. Phys. 24, 1316–1319 (1985).
[CrossRef]

Opt. Commun. (1)

F. Auracher, H. H. Witte, “A New Design for an Integrated Optical Isolator,” Opt. Commun. 13, 435–438 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the magnetooptic waveguide.

Fig. 2
Fig. 2

Cut-off thickness vs the difference between the components xx of the dielectric tensors of film and cover.

Fig. 3
Fig. 3

Propagation constant of the TM0 mode vs film thickness for forward and backward propagation.

Fig. 4
Fig. 4

Variation of the normalized intensity of the TM0 mode along the film normal; parameter is the film thickness.

Fig. 5
Fig. 5

Simulated coupling efficiency between the TM0 mode of the waveguide and a glass fiber which is represented by a Gaussian profile.

Fig. 6
Fig. 6

Ratio between the coupling efficiencies of Fig. 5 for forward and backward propagation.

Tables (1)

Tables Icon

Table I Material Parameters Used In the Calculations

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

^ j = ( j n x 0 i j x z 0 j y y 0 - i j x z 0 j x x ) ,
E = ( E x , 0 , E z ) exp [ i ( ω t - β z ) ] ,             H = ( 0 , H y , 0 ) exp [ i ( ω t - β z ) ] .
2 H y x 2 = ( β 2 - k 2 j eff ) H y
j eff = j x x - j x z 2 j x x .
h d = Γ f c + Γ f s + m π ,
h 2 = k 2 f eff - β 2 ,
Γ f c = tan - 1 { 1 h [ f eff c eff ( β 2 - k 2 c eff - β c x z c x x ) + β f x z f x x ] } ,
Γ f s = tan - 1 [ 1 h ( f eff s β 2 - k 2 s - β f x z f x x ) ] .
β min = k c eff .
d c = Γ f c c + Γ f s c h c ,
Δ d c = Γ f c c + - Γ f c c - + Γ f s c + - Γ f s c - h c ,
Γ f c c ± = ± tan - 1 [ c eff f eff - c eff ( f x z f x x - f eff c eff c x z c x x ) ] ,
Γ f s c ± = tan - 1 [ 1 f eff - c eff ( j eff s c eff - s f x z f x x c eff ) ] .
Δ d c = 2 k c eff Δ x z Δ eff ,
Δ x z = c x z - f x z ,
Δ eff = f eff - c eff f x x - c x x = Δ x x .
I 0 = - + E x 2 d x .
E x G = E x o G · exp ( - ( x - d ) 2 2 r 2 )
η = | - + E x · E x G d x | 2 - + E x 2 d x · - + E x G 2 d x

Metrics