Abstract

We present results of the use of a CO2 waveguide laser for the reproducible fabrication of efficient microlenses on single-mode optical fibers. Short intense laser pulses are used both to melt microlens tips to specific radii and to micromachine microlenses by ablative removal of small (~1-μm2) areas of glass from the fiber surface. CO2 laser heating of fiber tips results in more consistent lens curvature than the electric arc commonly used in microlens fabrication. The microlenses formed using a laser microlathe, in which spinning fibers are shaped by simultaneous cutting and heating in the pulsed CO2 laser beam, show excellent laser–fiber coupling with losses in the 1.5–3-dB range, an improvement of more than 2 dB over coupling with standard microlenses made by the etch and melt technique.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wenke, Y. Zhu, “Comparison of Efficiency and Feedback Characteristics of Techniques for Coupling Semiconductor Lasers to Single-Mode Fiber,” Appl. Opt. 22, 3837–3844 (1983).
    [CrossRef] [PubMed]
  2. H. Kuwahara, M. Sasaki, N. Tokoyo, “Efficient Coupling from Semiconductor Lasers into Single-Mode Fibers with Tapered Hemispherical Ends,” Appl. Opt. 19, 2578–2583 (1980).
    [CrossRef] [PubMed]
  3. G. Eisenstein, D. Vitello, “Chemically Etched Conical Microlenses for Coupling Single-Mode Lasers into Single-Mode Fibers,” Appl. Opt. 21, 3470–3474 (1982).
    [CrossRef] [PubMed]
  4. H. M. Presby, “Laser Micromachining of Optical Fibers for Component Fabrication,” submitted for publication.
  5. U. C. Paek, A. L. Weaver, “Formation of a Spherical Lens at Optical Fiber Ends with a CO2 Laser,” Appl. Opt. 14, 294–298 (1975).
    [CrossRef] [PubMed]
  6. K. Kinoshita, M. Kobayashi, “End Preparation and Fusion Splicing of an Optical Fiber Array with a CO2 Laser,” Appl. Opt. 18, 3256–3260 (1979).
    [CrossRef] [PubMed]
  7. S. S. Charschan, Lasers in Industry (Van Nostrand Reinhold, New York, 1972).
  8. B. Hillerich, J. Guttmann, “Deterioration of Taper Lens Performance Due to Taper Asymmetry,” IEEE/OSA J. Lightwave Technol. LT-7, 99–104 (1989).
    [CrossRef]
  9. C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to Fiber Coupling,” to be published.
  10. T. Schwander, B. Schwaderen, H. Storm, “Coupling of Lasers to Single-Mode Fibres with High Efficiency and Low Optical Feedback,” Electron. Lett. 21, 287–289 (1985).
    [CrossRef]

1989

B. Hillerich, J. Guttmann, “Deterioration of Taper Lens Performance Due to Taper Asymmetry,” IEEE/OSA J. Lightwave Technol. LT-7, 99–104 (1989).
[CrossRef]

1985

T. Schwander, B. Schwaderen, H. Storm, “Coupling of Lasers to Single-Mode Fibres with High Efficiency and Low Optical Feedback,” Electron. Lett. 21, 287–289 (1985).
[CrossRef]

1983

1982

1980

1979

1975

Charschan, S. S.

S. S. Charschan, Lasers in Industry (Van Nostrand Reinhold, New York, 1972).

Dragone, C.

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to Fiber Coupling,” to be published.

Edwards, C. A.

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to Fiber Coupling,” to be published.

Eisenstein, G.

Guttmann, J.

B. Hillerich, J. Guttmann, “Deterioration of Taper Lens Performance Due to Taper Asymmetry,” IEEE/OSA J. Lightwave Technol. LT-7, 99–104 (1989).
[CrossRef]

Hillerich, B.

B. Hillerich, J. Guttmann, “Deterioration of Taper Lens Performance Due to Taper Asymmetry,” IEEE/OSA J. Lightwave Technol. LT-7, 99–104 (1989).
[CrossRef]

Kinoshita, K.

Kobayashi, M.

Kuwahara, H.

Paek, U. C.

Presby, H. M.

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to Fiber Coupling,” to be published.

H. M. Presby, “Laser Micromachining of Optical Fibers for Component Fabrication,” submitted for publication.

Sasaki, M.

Schwaderen, B.

T. Schwander, B. Schwaderen, H. Storm, “Coupling of Lasers to Single-Mode Fibres with High Efficiency and Low Optical Feedback,” Electron. Lett. 21, 287–289 (1985).
[CrossRef]

Schwander, T.

T. Schwander, B. Schwaderen, H. Storm, “Coupling of Lasers to Single-Mode Fibres with High Efficiency and Low Optical Feedback,” Electron. Lett. 21, 287–289 (1985).
[CrossRef]

Storm, H.

T. Schwander, B. Schwaderen, H. Storm, “Coupling of Lasers to Single-Mode Fibres with High Efficiency and Low Optical Feedback,” Electron. Lett. 21, 287–289 (1985).
[CrossRef]

Tokoyo, N.

Vitello, D.

Weaver, A. L.

Wenke, G.

Zhu, Y.

Appl. Opt.

Electron. Lett.

T. Schwander, B. Schwaderen, H. Storm, “Coupling of Lasers to Single-Mode Fibres with High Efficiency and Low Optical Feedback,” Electron. Lett. 21, 287–289 (1985).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

B. Hillerich, J. Guttmann, “Deterioration of Taper Lens Performance Due to Taper Asymmetry,” IEEE/OSA J. Lightwave Technol. LT-7, 99–104 (1989).
[CrossRef]

Other

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal Microlenses for Laser to Fiber Coupling,” to be published.

H. M. Presby, “Laser Micromachining of Optical Fibers for Component Fabrication,” submitted for publication.

S. S. Charschan, Lasers in Industry (Van Nostrand Reinhold, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Depth of material melted vs pulse length.

Fig. 2
Fig. 2

Diagram of fiber micromachining setup.

Fig. 3
Fig. 3

Pictures of standard and laser-made lenses. Micromachining can also form lenses identical in appearance to those made by etching and melting.

Fig. 4
Fig. 4

Histogram of microlens performances.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I max = P laser 2 π ω 0 2 .
d T d t = c 2 d 2 T d x 2 + F ( x , t ) ,
T ( x , t ) = 0 t - G ( x - s , t - t ) F ( s , t ) d s d t ,
G ( x , t ) = 1 4 π c t exp [ - ( x 2 4 c 2 t ) ]
F ( s , t ) = T vap δ ( x ) [ Θ ( t ) - Θ ( t - τ ) ] .
T ( x , t ) = T vap e r f c ( x 2 c τ ) .

Metrics