Abstract

A hybrid digital optical computing system is constructed, a variation of the optical parallel array logic system (OPALS). The OPALS is a general-purpose digital optical computing system based on optical array logic, in which image coding and 2-D correlation are used to achieve parallel logical operations. In the constructed system, 2-D correlation for optical array logic is performed optically with a modified multireflective correlator; the other procedures in optical array logic are achieved by electronics including a TV feedback system. We have verified correct execution of programs written by optical array logic on the system. Although the processing speed of the system is still slow because of the sequential process in electronics, it can be drastically improved by replacing the sequential processing devices with parallel ones.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Feitelson, Optical Computing. A Survey for Computer Scientists (MIT Press, Cambridge, MA, 1988).
  2. A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119–127 (1980).
  3. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455–3464 (1984).
    [CrossRef] [PubMed]
  4. B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based Upon a Single Gate Full Adder,” Opt. Commun. 56, 87–92 (1985).
    [CrossRef]
  5. M. J. Murdocca, B. Sugla, “Design for an Optical Random Access Memory,” Appl. Opt. 28, 182–188 (1989).
    [CrossRef] [PubMed]
  6. G. Stucke, “Parallel Architecture for a Digital Optical Computer,” Appl. Opt. 28, 363–370 (1989).
    [CrossRef] [PubMed]
  7. Y. Ichioka, J. Tanida, “Optical Parallel Logic Gates Using a Shadow-Casting System for Optical Digital Computing,” Proc. IEEE 72, 787–801 (1984).
    [CrossRef]
  8. J. Tanida, Y. Ichioka, “Programming of Optical Array Logic. 1: Image Data Processing,” Appl. Opt. 27, 2926–2930 (1988).
    [CrossRef] [PubMed]
  9. J. Tanida, M. Fukui, Y. Ichioka, “Programming of Optical Array Logic. 2: Numerical Data Processing Based on Pattern Logic,” Appl. Opt. 27, 2931–2939 (1988).
    [CrossRef] [PubMed]
  10. M. Fukui, J. Tanida, Y. Ichioka, “Flexible-Structured Computation Based on Optical Array Logic,” Appl. Opt.29, (1990), in press.
    [CrossRef] [PubMed]
  11. J. Tanida, Y. Ichioka, “OPALS: Optical Parallel Array Logic System,” Appl. Opt. 25, 1565–1570 (1986).
    [CrossRef] [PubMed]
  12. J. Tanida, Y. Ichioka, “Modular Components for an Optical Array Logic System,” Appl. Opt. 26, 3954–3960 (1987).
    [CrossRef] [PubMed]
  13. J. Tanida, J. Nakagawa, Y. Ichioka, “Birefringent Encoding and Multichannel Reflective Correlator for Optical Array Logic,” Appl. Opt. 27, 3819–3823 (1988).
    [CrossRef] [PubMed]
  14. K. Preston, M. J. B. Duff, Modern Cellular Automata. Theory and Applications (Plenum, New York, 1984).
  15. M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967).

1989 (2)

1988 (3)

1987 (1)

1986 (1)

1985 (1)

B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based Upon a Single Gate Full Adder,” Opt. Commun. 56, 87–92 (1985).
[CrossRef]

1984 (2)

Y. Ichioka, J. Tanida, “Optical Parallel Logic Gates Using a Shadow-Casting System for Optical Digital Computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455–3464 (1984).
[CrossRef] [PubMed]

1980 (1)

A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119–127 (1980).

Duff, M. J. B.

K. Preston, M. J. B. Duff, Modern Cellular Automata. Theory and Applications (Plenum, New York, 1984).

Feitelson, D. G.

D. G. Feitelson, Optical Computing. A Survey for Computer Scientists (MIT Press, Cambridge, MA, 1988).

Forchheimer, R.

Fukui, M.

J. Tanida, M. Fukui, Y. Ichioka, “Programming of Optical Array Logic. 2: Numerical Data Processing Based on Pattern Logic,” Appl. Opt. 27, 2931–2939 (1988).
[CrossRef] [PubMed]

M. Fukui, J. Tanida, Y. Ichioka, “Flexible-Structured Computation Based on Optical Array Logic,” Appl. Opt.29, (1990), in press.
[CrossRef] [PubMed]

Huang, A.

A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119–127 (1980).

Ichioka, Y.

Jenkins, B. K.

Minsky, M.

M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967).

Murdocca, M. J.

Nakagawa, J.

Preston, K.

K. Preston, M. J. B. Duff, Modern Cellular Automata. Theory and Applications (Plenum, New York, 1984).

Sawchuk, A. A.

Soffer, B. H.

Strand, T. C.

Stucke, G.

Sugla, B.

Tanida, J.

Wherrett, B. S.

B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based Upon a Single Gate Full Adder,” Opt. Commun. 56, 87–92 (1985).
[CrossRef]

Appl. Opt. (8)

Opt. Commun. (1)

B. S. Wherrett, “All-Optical Computation—a Parallel Integrator Based Upon a Single Gate Full Adder,” Opt. Commun. 56, 87–92 (1985).
[CrossRef]

Proc. IEEE (1)

Y. Ichioka, J. Tanida, “Optical Parallel Logic Gates Using a Shadow-Casting System for Optical Digital Computing,” Proc. IEEE 72, 787–801 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. Huang, “Design for an Optical General Purpose Digital Computer,” Proc. Soc. Photo-Opt. Instrum. Eng. 232, 119–127 (1980).

Other (4)

D. G. Feitelson, Optical Computing. A Survey for Computer Scientists (MIT Press, Cambridge, MA, 1988).

M. Fukui, J. Tanida, Y. Ichioka, “Flexible-Structured Computation Based on Optical Array Logic,” Appl. Opt.29, (1990), in press.
[CrossRef] [PubMed]

K. Preston, M. J. B. Duff, Modern Cellular Automata. Theory and Applications (Plenum, New York, 1984).

M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Processing procedures of OAL.

Fig. 2
Fig. 2

OAL description by kernel expression: (a) kernel expression; (b) sets of kernel units; (c) operation kernels. The shaded squares in the operation kernels indicate the origin of a neighborhood area.

Fig. 3
Fig. 3

OPALS involving a port selector.

Fig. 4
Fig. 4

Constructed H-OPALS: (a) block diagram and (b) photograph of the system.

Fig. 5
Fig. 5

Optical setup of the multichannel reflective correlator with a 2-D galvanometer mirror.

Fig. 6
Fig. 6

Sequence of correlation in the multichannel reflective correlator with a 2-D galvanometer mirror.

Fig. 7
Fig. 7

Terminal display monitoring the H-OPALS.

Fig. 8
Fig. 8

Experimental result of parallel logic operations: (a) and (b) input images; (c) and (d) optical correlated images in operations A and A xor B; (e) and (f) outputs of A and A xor B.

Fig. 9
Fig. 9

Experimental results of the maze solution.

Fig. 10
Fig. 10

Pixel patterns used for image thinning.

Fig. 11
Fig. 11

Experimental results of image thinning.

Fig. 12
Fig. 12

Algorithm for binary addition with pattern logic.

Fig. 13
Fig. 13

Experimental results of addition: (a) input data; (b) image form of the input data; (c) attribute patterns for the input data; (d)–(h) output images at first, second, third, fourth, and final steps; (i) the decoded numbers in a decimal system.

Fig. 14
Fig. 14

Preparation of the Turing machine simulated on the OPALS: (a) characteristics of the target Turing machine; (b) pixel patterns for coding symbols and interval status; (c) data arrangement.

Fig. 15
Fig. 15

Experimental results of the Turing machine simulated on the H-OPALS. Four Turing machines are driven in parallel.

Tables (3)

Tables Icon

Table I Processing Time Required for One Interation in Executed Programs

Tables Icon

Table II Processing Time Required for Each Procedure in OAL

Tables Icon

Table III Symbols for Specifying Kernel Units

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i , j N e i g h b o r s f i , j ( a i , j , b i , j ) ,
..             .1 .1 _ .0 ..             .1
. . . 1 . 1 _ . 0 . . . 1 .

Metrics