Abstract

Matrix formulation to describe the light propagation in stratified multilayered films has been extended to a system with phase incoherence. Several equations for the reflectance, transmittance, and light beam intensity in the film system are derived from the formulation. Some formulas previously proposed are corrected in reference to the present method. The beam intensity description is used for the calculation of light emissive power from multilayered films having a temperature gradient. It is found that the equations derived here are exactly equivalent to those derived from the radiative transfer equation. However, the present method is more tractable, and can be readily used for a film system with any number of layers.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures

Kamil Postava, Tomuo Yamaguchi, and Roman Kantor
Appl. Opt. 41(13) 2521-2531 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription