Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Matrix formalism for calculation of the light beam intensity in stratified multilayered films, and its use in the analysis of emission spectra

Not Accessible

Your library or personal account may give you access

Abstract

Matrix formulation to describe the light propagation in stratified multilayered films has been extended to a system with phase incoherence. Several equations for the reflectance, transmittance, and light beam intensity in the film system are derived from the formulation. Some formulas previously proposed are corrected in reference to the present method. The beam intensity description is used for the calculation of light emissive power from multilayered films having a temperature gradient. It is found that the equations derived here are exactly equivalent to those derived from the radiative transfer equation. However, the present method is more tractable, and can be readily used for a film system with any number of layers.

© 1990 Optical Society of America

Full Article  |  PDF Article
More Like This
Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures

Kamil Postava, Tomuo Yamaguchi, and Roman Kantor
Appl. Opt. 41(13) 2521-2531 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.