Abstract

A novel ellipsometric method was introduced in an earlier publication, based on a rotating plane polarized beam. We show that the method is substantially improved by using a stabilized Zeeman laser as the light source.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, J. M. Bennett, H. E. Bennett, “Polarization” in Handbook of Optics, W. G. Driscoll, Ed. (McGraw-Hill, New York1978); R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977); A. R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer for Film-Substrate Systems,” J. Opt. Soc. Am. 67, 1286–1287 (1977).
    [CrossRef]
  2. J. Shamir, Y. Fainman, “Rotating Linearly Polarized Light Source,” Appl. Opt. 21, 364–365 (1982).
    [CrossRef] [PubMed]
  3. J. Shamir, A. Klein, “Ellipsometry with Rotating Plane-Polarized Light,” Appl. Opt. 25, 1476–1480 (1986).
    [CrossRef] [PubMed]
  4. J. Shamir, “Speckle Polarization Investigated by Novel Ellipsometry,” Opt. Eng. 25, 618–622 (1986).
    [CrossRef]
  5. R. C. Jones, “A New Calculus for the Treatment of Optical Systems: I, II, III,” J. Opt. Soc. Am. 31, 488–503 (1941); “A New Calculus for the Treatment of Optical Systems: IV,” J. Opt. Soc. Am. 32, 486–493 (1942).
    [CrossRef]

1986

J. Shamir, A. Klein, “Ellipsometry with Rotating Plane-Polarized Light,” Appl. Opt. 25, 1476–1480 (1986).
[CrossRef] [PubMed]

J. Shamir, “Speckle Polarization Investigated by Novel Ellipsometry,” Opt. Eng. 25, 618–622 (1986).
[CrossRef]

1982

1941

Bennett, H. E.

See, for example, J. M. Bennett, H. E. Bennett, “Polarization” in Handbook of Optics, W. G. Driscoll, Ed. (McGraw-Hill, New York1978); R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977); A. R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer for Film-Substrate Systems,” J. Opt. Soc. Am. 67, 1286–1287 (1977).
[CrossRef]

Bennett, J. M.

See, for example, J. M. Bennett, H. E. Bennett, “Polarization” in Handbook of Optics, W. G. Driscoll, Ed. (McGraw-Hill, New York1978); R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977); A. R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer for Film-Substrate Systems,” J. Opt. Soc. Am. 67, 1286–1287 (1977).
[CrossRef]

Fainman, Y.

Jones, R. C.

Klein, A.

Shamir, J.

Appl. Opt.

J. Opt. Soc. Am.

Opt. Eng.

J. Shamir, “Speckle Polarization Investigated by Novel Ellipsometry,” Opt. Eng. 25, 618–622 (1986).
[CrossRef]

Other

See, for example, J. M. Bennett, H. E. Bennett, “Polarization” in Handbook of Optics, W. G. Driscoll, Ed. (McGraw-Hill, New York1978); R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977); A. R. M. Zaghloul, R. M. A. Azzam, “Single-Element Rotating-Polarizer Ellipsometer for Film-Substrate Systems,” J. Opt. Soc. Am. 67, 1286–1287 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic system configuration with options for reflection and transmission measurements: SZL, stabilized Zeeman laser; S, sample; P, polarizer (analyzer); and D, detector.

Fig. 2
Fig. 2

AC signal amplitude as a function of orientation of the analyzer with a quarterwave plate as the sample.

Fig. 3
Fig. 3

As Fig. 2 but for a glass plate.

Fig. 4
Fig. 4

As Fig. 2 but for SiO film.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E = [ sin ( Ω t ) cos ( Ω t ) ] ,
E 1 = S E ,
S = ( τ p 0 0 τ s ) ,
τ s τ p tan ψ · exp - j Δ .
E 0 = P S E ,
P = ( cos 2 α sin α cos α sin α cos α sin 2 α ) ,
E 0 = ( τ p cos 2 α sin Ω t + ½ τ s sin 2 α cos Ω t ½ τ p sin 2 α sin Ω t + τ s sin 2 α cos Ω t ) .
I = I dc + I ac · sin ( 2 Ω t + β ) ,
I dc ( α ) = ½ · [ ( r s ) 2 · sin 2 α + ( r p ) 2 · cos 2 α ] , I ac ( α ) = ½ · { ( r p · r s · sin 2 α · cos Δ ) 2 + [ ( r s ) 2 · sin 2 α - ( r p ) 2 · cos 2 α ] 2 } 1 / 2 , tan β ( α ) = r p · r s · sin 2 α · cos Δ ( r s ) 2 · sin 2 α - ( r p ) 2 · cos 2 α ,
I ac ( π / 4 ) I ac / ( π / 2 ) = 1 4 · ( tan 2 ψ - 1 ) 2 + tan 2 ψ · cos 2 Δ
β ( α ) = { 0 if α = 0 , π if α = π 2 , π 2 if α = ψ .
W = { 1 0 0 exp [ - j ( N · π 2 - Γ ) ] } ,
W = ( 1 0 0 sin Γ - j ) .
I dc = ½ · [ sin 2 α · ( 1 + sin 2 Γ ) + cos 2 α ] , I ac = ½ · { ( sin 2 α · sin Γ ) 2 + [ sin 2 α · ( 1 + sin 2 Γ ) - cos 2 α ] 2 } 1 / 2 , tan β = sin 2 α · sin Γ sin 2 α · ( 1 + sin 2 Γ ) - cos 2 α .
I ac ( min ) I ac ( max ) = 1 2 · sin Γ · 4 + sin 2 Γ .
W = ( 1 0 0 - 1 - j · sin Γ ) .
I ac ( 0 ) I ac ( π / 2 ) = 70.1 , I ac ( π / 4 ) I ac ( π / 2 ) = 35.92 ,
I ac ( 0 ) I ac ( π / 2 ) = 8.62 , I ac ( π / 4 ) I ac ( π / 2 ) = 4.72 ,

Metrics