Abstract

Spontaneous vibrational Raman scattering (VRS) is produced by a broadband excimer laser at 248 nm (KrF) in a H2–air flame and VRS spectra are recorded for lean, stoichiometric, and rich flames. Except at very lean flame conditions, laser-induced fluorescence (LIF) processes interfere with VRS Stokes lines from H2, H2O, and O2. No interference is found for the N2 Stokes and N2 anti-Stokes lines. In a stoichiometric H2/air flame, single-pulse measurements of N2 concentration and temperature (by the VRS Stokes to anti-Stokes ratio) have relative standard deviation of 7.7 and 10%, respectively. These single pulse measurement errors compare well with photon statistics calculations using measured Raman cross sections.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Pitz, M. C. Drake, “Intermittency and Conditional Averaging in a Turbulent Nonpremixed Flame by Raman Scattering,” AIAA J., 24, 815–822 (1986).
    [CrossRef]
  2. M. C. Drake, M. Lapp, C. M. Penney, “Use of the Vibrational Raman Effect for Gas Temperature Measurements,” Temperature: Its Measurement and Control in Science and Industry, vol. 5, J. F. Schooley, Ed. (American Institute of Physics, New York, 1982), p. 631–638.
  3. R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame, 67, 189–206 (1987).
    [CrossRef]
  4. S. Lederman, “The Use of Laser Raman Diagnostics in Flow Fields and Combustion,” Prog. Energy Combust. Sci., 3, 1–34 (1977).
    [CrossRef]
  5. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Energy and Engineering Science Series, vol. 7, A. K. Gupta, D. G. Lilley, Eds. (Abacus Press, Cambridge, MA, 1988).
  6. A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt., 24, 2731–2736 (1985).
    [CrossRef] [PubMed]
  7. R. P. Lucht, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett. 12, 78–80 (1987).
    [CrossRef] [PubMed]
  8. T. Kobayashi et al., “Application of UV and VUV Excimer Lasers in Combustion Measurements Using Enhanced Raman Scattering,” Laser Diagnostics and Modeling Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, Eds. (Springer-Verlag, New York, 1987) pp. 133–140.
    [CrossRef]
  9. A. N. Malov, S. Y. Fedorov, “XeCl and KrF Excimer Lasers for Diagnostics of Flames by Spontaneous Raman Scattering,” Combust. Expl. Shock Waves USSR, 24, 431–434 (1988).
    [CrossRef]
  10. J. A. Shirley, L. R. Boedeker, “Non-Intrusive Space Shuttle Main Engine Nozzle Exit Diagnostics,” in AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference (Boston, 1988), Paper AIAA-88-3038.
  11. S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng.3–8, January (1953).
  12. W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983) pp. 181–187.
  13. Burner purchased from Research Technologies, P.O. Box 384, Pleasanton, CA 94566.
  14. Ultrapure n-butyl acetate (99+%), Alfa Products, 152 Andover St., Danvers, Mass., 01923.
  15. P. Andersen, A. Bath, W. Groger, H. W. Lulf, G. Meijer, J. J. ter Meulen, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt., 27, 365–378 (1988).
    [CrossRef]
  16. C. Fotakis, C. B. McKendrick, R. J. Donovan, “Two-Photon Excitation of H2O and D2O with a KrF Laser (248 nm): Photofragment Fluorescence from OH and OD(A2∑+),” Chem. Phys. Lett. 80, 598–600 (1981).
    [CrossRef]
  17. P. J. Hargis, “Trace Detection of Small Moleculesby Pulsed-Ultraviolet (UV) Laser Raman Spectroscopy,” Laser Spectroscopy for Sensitive Detection, J. A. Gelbwachs, Ed. Proc. Soc. Photo-Opt. Instrum. Eng.286, 139–145 (1981).

1988 (2)

1987 (2)

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame, 67, 189–206 (1987).
[CrossRef]

R. P. Lucht, “Three-Laser Coherent Anti-Stokes Raman Scattering Measurements of Two Species,” Opt. Lett. 12, 78–80 (1987).
[CrossRef] [PubMed]

1986 (1)

R. W. Pitz, M. C. Drake, “Intermittency and Conditional Averaging in a Turbulent Nonpremixed Flame by Raman Scattering,” AIAA J., 24, 815–822 (1986).
[CrossRef]

1985 (1)

1981 (1)

C. Fotakis, C. B. McKendrick, R. J. Donovan, “Two-Photon Excitation of H2O and D2O with a KrF Laser (248 nm): Photofragment Fluorescence from OH and OD(A2∑+),” Chem. Phys. Lett. 80, 598–600 (1981).
[CrossRef]

1977 (1)

S. Lederman, “The Use of Laser Raman Diagnostics in Flow Fields and Combustion,” Prog. Energy Combust. Sci., 3, 1–34 (1977).
[CrossRef]

1953 (1)

S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng.3–8, January (1953).

Andersen, P.

Anderson, T. J.

Bath, A.

Bilger, R. W.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame, 67, 189–206 (1987).
[CrossRef]

Bischel, W. K.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983) pp. 181–187.

Black, G.

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983) pp. 181–187.

Boedeker, L. R.

J. A. Shirley, L. R. Boedeker, “Non-Intrusive Space Shuttle Main Engine Nozzle Exit Diagnostics,” in AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference (Boston, 1988), Paper AIAA-88-3038.

Dibble, R. W.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame, 67, 189–206 (1987).
[CrossRef]

Donovan, R. J.

C. Fotakis, C. B. McKendrick, R. J. Donovan, “Two-Photon Excitation of H2O and D2O with a KrF Laser (248 nm): Photofragment Fluorescence from OH and OD(A2∑+),” Chem. Phys. Lett. 80, 598–600 (1981).
[CrossRef]

Drake, M. C.

R. W. Pitz, M. C. Drake, “Intermittency and Conditional Averaging in a Turbulent Nonpremixed Flame by Raman Scattering,” AIAA J., 24, 815–822 (1986).
[CrossRef]

M. C. Drake, M. Lapp, C. M. Penney, “Use of the Vibrational Raman Effect for Gas Temperature Measurements,” Temperature: Its Measurement and Control in Science and Industry, vol. 5, J. F. Schooley, Ed. (American Institute of Physics, New York, 1982), p. 631–638.

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous, Multiple Species Measurements,” Appl. Opt., 24, 2731–2736 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Energy and Engineering Science Series, vol. 7, A. K. Gupta, D. G. Lilley, Eds. (Abacus Press, Cambridge, MA, 1988).

Fedorov, S. Y.

A. N. Malov, S. Y. Fedorov, “XeCl and KrF Excimer Lasers for Diagnostics of Flames by Spontaneous Raman Scattering,” Combust. Expl. Shock Waves USSR, 24, 431–434 (1988).
[CrossRef]

Fotakis, C.

C. Fotakis, C. B. McKendrick, R. J. Donovan, “Two-Photon Excitation of H2O and D2O with a KrF Laser (248 nm): Photofragment Fluorescence from OH and OD(A2∑+),” Chem. Phys. Lett. 80, 598–600 (1981).
[CrossRef]

Groger, W.

Hargis, P. J.

P. J. Hargis, “Trace Detection of Small Moleculesby Pulsed-Ultraviolet (UV) Laser Raman Spectroscopy,” Laser Spectroscopy for Sensitive Detection, J. A. Gelbwachs, Ed. Proc. Soc. Photo-Opt. Instrum. Eng.286, 139–145 (1981).

Kline, S. J.

S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng.3–8, January (1953).

Kobayashi, T.

T. Kobayashi et al., “Application of UV and VUV Excimer Lasers in Combustion Measurements Using Enhanced Raman Scattering,” Laser Diagnostics and Modeling Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, Eds. (Springer-Verlag, New York, 1987) pp. 133–140.
[CrossRef]

Lapp, M.

M. C. Drake, M. Lapp, C. M. Penney, “Use of the Vibrational Raman Effect for Gas Temperature Measurements,” Temperature: Its Measurement and Control in Science and Industry, vol. 5, J. F. Schooley, Ed. (American Institute of Physics, New York, 1982), p. 631–638.

Lederman, S.

S. Lederman, “The Use of Laser Raman Diagnostics in Flow Fields and Combustion,” Prog. Energy Combust. Sci., 3, 1–34 (1977).
[CrossRef]

Lucht, R. P.

Lulf, H. W.

Malov, A. N.

A. N. Malov, S. Y. Fedorov, “XeCl and KrF Excimer Lasers for Diagnostics of Flames by Spontaneous Raman Scattering,” Combust. Expl. Shock Waves USSR, 24, 431–434 (1988).
[CrossRef]

Masri, A. R.

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame, 67, 189–206 (1987).
[CrossRef]

McClintock, F. A.

S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng.3–8, January (1953).

McKendrick, C. B.

C. Fotakis, C. B. McKendrick, R. J. Donovan, “Two-Photon Excitation of H2O and D2O with a KrF Laser (248 nm): Photofragment Fluorescence from OH and OD(A2∑+),” Chem. Phys. Lett. 80, 598–600 (1981).
[CrossRef]

Meijer, G.

Penney, C. M.

M. C. Drake, M. Lapp, C. M. Penney, “Use of the Vibrational Raman Effect for Gas Temperature Measurements,” Temperature: Its Measurement and Control in Science and Industry, vol. 5, J. F. Schooley, Ed. (American Institute of Physics, New York, 1982), p. 631–638.

Pitz, R. W.

R. W. Pitz, M. C. Drake, “Intermittency and Conditional Averaging in a Turbulent Nonpremixed Flame by Raman Scattering,” AIAA J., 24, 815–822 (1986).
[CrossRef]

Shirley, J. A.

J. A. Shirley, L. R. Boedeker, “Non-Intrusive Space Shuttle Main Engine Nozzle Exit Diagnostics,” in AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference (Boston, 1988), Paper AIAA-88-3038.

ter Meulen, J. J.

AIAA J. (1)

R. W. Pitz, M. C. Drake, “Intermittency and Conditional Averaging in a Turbulent Nonpremixed Flame by Raman Scattering,” AIAA J., 24, 815–822 (1986).
[CrossRef]

Appl. Opt. (2)

Chem. Phys. Lett. (1)

C. Fotakis, C. B. McKendrick, R. J. Donovan, “Two-Photon Excitation of H2O and D2O with a KrF Laser (248 nm): Photofragment Fluorescence from OH and OD(A2∑+),” Chem. Phys. Lett. 80, 598–600 (1981).
[CrossRef]

Combust. Expl. Shock Waves USSR (1)

A. N. Malov, S. Y. Fedorov, “XeCl and KrF Excimer Lasers for Diagnostics of Flames by Spontaneous Raman Scattering,” Combust. Expl. Shock Waves USSR, 24, 431–434 (1988).
[CrossRef]

Combust. Flame (1)

R. W. Dibble, A. R. Masri, R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame, 67, 189–206 (1987).
[CrossRef]

Mech. Eng. (1)

S. J. Kline, F. A. McClintock, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng.3–8, January (1953).

Opt. Lett. (1)

Prog. Energy Combust. Sci. (1)

S. Lederman, “The Use of Laser Raman Diagnostics in Flow Fields and Combustion,” Prog. Energy Combust. Sci., 3, 1–34 (1977).
[CrossRef]

Other (8)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Energy and Engineering Science Series, vol. 7, A. K. Gupta, D. G. Lilley, Eds. (Abacus Press, Cambridge, MA, 1988).

P. J. Hargis, “Trace Detection of Small Moleculesby Pulsed-Ultraviolet (UV) Laser Raman Spectroscopy,” Laser Spectroscopy for Sensitive Detection, J. A. Gelbwachs, Ed. Proc. Soc. Photo-Opt. Instrum. Eng.286, 139–145 (1981).

T. Kobayashi et al., “Application of UV and VUV Excimer Lasers in Combustion Measurements Using Enhanced Raman Scattering,” Laser Diagnostics and Modeling Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, Eds. (Springer-Verlag, New York, 1987) pp. 133–140.
[CrossRef]

W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983) pp. 181–187.

Burner purchased from Research Technologies, P.O. Box 384, Pleasanton, CA 94566.

Ultrapure n-butyl acetate (99+%), Alfa Products, 152 Andover St., Danvers, Mass., 01923.

J. A. Shirley, L. R. Boedeker, “Non-Intrusive Space Shuttle Main Engine Nozzle Exit Diagnostics,” in AIAA/ASME/SAE/ASEE 24th Joint Propulsion Conference (Boston, 1988), Paper AIAA-88-3038.

M. C. Drake, M. Lapp, C. M. Penney, “Use of the Vibrational Raman Effect for Gas Temperature Measurements,” Temperature: Its Measurement and Control in Science and Industry, vol. 5, J. F. Schooley, Ed. (American Institute of Physics, New York, 1982), p. 631–638.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated vibrational Raman spectra of nitrogen for 248.4-nm excitation.

Fig. 2
Fig. 2

Calculated relative standard deviations of single-pulse vibrational Raman measurements in air: (a) N2 Stokes error, (b) N2 anti-Stokes error, (c) pressure error, and (d) temperature error.

Fig. 3
Fig. 3

Schematic of the UV Raman system.

Fig. 4
Fig. 4

UV Raman spectra from a H2–air flame at various equivalence ratios.

Fig. 5
Fig. 5

Measured probability density functions: (a) N2 mole fraction in room air, (b) N2 mole fraction in a stoichiometric H2–air flame, (c) anti-Stokes signal in a stoichiometric H2–air flame, and (d) temperature in a stoichiometric H2–air flame.

Tables (1)

Tables Icon

Table I Single Pulse Raman Measurement Error (50 mJ of Polarized 248-nm Light)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S ( V , J ) g ( 2 J + 1 ) ( V + 1 ) v 4 Q rot Q vib exp [ - h c G ( V , J ) k T ] .
N s = Q s C s Ω L n σ s E / ( h v s ) ,
T = T v ln ( N s / N a ) + 3 l n ( v a / v s ) + ln ( K ) ,
S T T = 1 T [ ( T N s S N s ) 2 + ( T N a S N a ) 2 ] 1 / 2 ,
T N s = - ( T v / N s ) [ ln ( N s / N a ) + 3 ln ( v a / v s ) + ln ( K ) ] 2 ,
T N a = ( T v / N a ) [ ln ( N s / N a ) + 3 ln ( v a / v s ) + ln ( K ) ] 2 .

Metrics