Abstract

Corning 7059 glass thin film waveguides prepared by rf sputtering and vapor deposition were annealed with a CO2 laser at various powers and scan velocities. Some reduction in optical loss was observed after laser annealing of the films. The results show a reduction in optical loss with the number of laser scans. Optical profilometer measurements indicated no change in surface roughness after laser annealing. RBS analysis of laser annealed samples show no change in elemental composition. We discuss possible optical loss reduction mechanisms and present data on the marking of thin films when annealing is done at higher CO2 laser powers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dutta, H. E. Jackson, J. T. Boyd, “Reduction of Scattering from a Glass Thin-Film Optical Waveguide by CO2 Laser Annealing,” Appl. Phys. Lett. 37, 512–514 (1980).
    [CrossRef]
  2. S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873–3875 (1981).
    [CrossRef]
  3. S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin Film Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 321, 23–28 (1982).
  4. S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin-Film Waveguides,” Opt. Eng. 22, 117–120 (1983).
    [CrossRef]
  5. S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
    [CrossRef]
  6. M. V. Allmen, Laser Beam Interactions with Materials (Springer-Verlag, Berlin, 1987).
    [CrossRef]
  7. W. Stutius, W. Streifer, “Silicon Nitride Films on Silicon for Optical Waveguides,” Appl. Opt. 16, 3218–3222 (1977).
    [CrossRef] [PubMed]
  8. W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
    [CrossRef]
  9. M. Gupta, “Low-Optical-Loss Glass Thin Films,” paper submitted to Appl. Opt.
  10. P. K. Tien, “Light Waves in Thin Films and Integrated Optics,” Appl. Opt. 10, 2395–2413 (1971).
    [CrossRef] [PubMed]

1987 (1)

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

1983 (2)

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin-Film Waveguides,” Opt. Eng. 22, 117–120 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
[CrossRef]

1982 (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin Film Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 321, 23–28 (1982).

1981 (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873–3875 (1981).
[CrossRef]

1980 (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Reduction of Scattering from a Glass Thin-Film Optical Waveguide by CO2 Laser Annealing,” Appl. Phys. Lett. 37, 512–514 (1980).
[CrossRef]

1977 (1)

1971 (1)

Allmen, M. V.

M. V. Allmen, Laser Beam Interactions with Materials (Springer-Verlag, Berlin, 1987).
[CrossRef]

Borland, W. C.

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

Boyd, J. T.

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin-Film Waveguides,” Opt. Eng. 22, 117–120 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin Film Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 321, 23–28 (1982).

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Reduction of Scattering from a Glass Thin-Film Optical Waveguide by CO2 Laser Annealing,” Appl. Phys. Lett. 37, 512–514 (1980).
[CrossRef]

Dutta, S.

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin-Film Waveguides,” Opt. Eng. 22, 117–120 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin Film Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 321, 23–28 (1982).

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Reduction of Scattering from a Glass Thin-Film Optical Waveguide by CO2 Laser Annealing,” Appl. Phys. Lett. 37, 512–514 (1980).
[CrossRef]

Gupta, M.

M. Gupta, “Low-Optical-Loss Glass Thin Films,” paper submitted to Appl. Opt.

Jackson, H. E.

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin-Film Waveguides,” Opt. Eng. 22, 117–120 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin Film Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 321, 23–28 (1982).

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, “Reduction of Scattering from a Glass Thin-Film Optical Waveguide by CO2 Laser Annealing,” Appl. Phys. Lett. 37, 512–514 (1980).
[CrossRef]

Radens, C. J.

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

Streifer, W.

Stutius, W.

Tien, P. K.

White, C. W.

S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
[CrossRef]

Zelmon, D. E.

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Reduction of Scattering from a Glass Thin-Film Optical Waveguide by CO2 Laser Annealing,” Appl. Phys. Lett. 37, 512–514 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. C. Borland, D. E. Zelmon, C. J. Radens, J. T. Boyd, H. E. Jackson, “Properties of Four-Layer Planar Optical Waveguides Near Cutoff,” IEEE J. Quantum Electron. QE-23, 1172–1179 (1987).
[CrossRef]

J. Appl. Phys. (2)

S. Dutta, H. E. Jackson, J. T. Boyd, “Extremely Low-Loss Glass Thin-Film Optical Waveguides Utilizing Surface Coating and Laser Annealing,” J. Appl. Phys. 52, 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, C. W. White, “Rutherford Backscattering Evidence for Solid Phase Laser Annealing of Corning 7059 Glass and ZnO Thin Films,” J. Appl. Phys. 54, 2125–2126 (1983).
[CrossRef]

Opt. Eng. (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin-Film Waveguides,” Opt. Eng. 22, 117–120 (1983).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. Dutta, H. E. Jackson, J. T. Boyd, “Use of Laser Annealing to Achieve Low Loss in Corning 7059 Glass, ZnO, Si3N4, Nb2O5, and Ta2O5 Optical Thin Film Waveguides,” Proc. Soc. Photo-Opt. Instrum. Eng. 321, 23–28 (1982).

Other (2)

M. V. Allmen, Laser Beam Interactions with Materials (Springer-Verlag, Berlin, 1987).
[CrossRef]

M. Gupta, “Low-Optical-Loss Glass Thin Films,” paper submitted to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculation of attenuation loss vs cladding layer thickness for various waveguide thicknesses. The waveguide film index was assumed to be 1.5 and the cladding layer index was assumed to be 1.46.

Fig. 2
Fig. 2

Scattered light intensity vs position measurements for optical loss determination.

Fig. 3
Fig. 3

Optical loss reduction with CO2 laser annealing power.

Fig. 4
Fig. 4

Optical loss reduction with the number of laser scans. The laser annealing power was 30 watts.

Fig. 5
Fig. 5

Effect of laser scan velocity on optical loss reduction for various laser anneal powers.

Fig. 6
Fig. 6

Surface roughness measurement using an optical profilometer for waveguide surface.

Fig. 7
Fig. 7

Calculation of optical loss due to surface roughness data shown in Fig. 5.

Fig. 8
Fig. 8

RBS analysis of unannealed and CO2 laser annealed samples.

Fig. 9
Fig. 9

SEM photographs of a higher power laser annealed area where the marking of film was observed. (a) Laser annealed area at higher power; (b) higher magnification photograph of laser annealed area.

Metrics