Abstract

Laser-induced breakdown threshold intensities for helium, argon, xenon and clean air were measured as a function of pressure (p < 900 Torr) at wavelength λ = 0.532 μm using the Nd:YAG laser with 6.5-ns pulse duration. Pressure dependence of the breakdown of a 50-μm diam water droplet in these gases was also investigated. For pure gases, different free electron generation processes and electron loss processes dominate in different pressure regions. The water droplets decrease the breakdown thresholds up to 3 orders of magnitude depending on the pressure of the particular gas surrounding the droplet. For the droplet in He, Ar, and clean air for p < 800 Torr, the breakdown at the threshold intensity occurs inside the droplet and is independent of pressure. For the droplet in Xe, the breakdown occurs inside the droplet for p < 140 Torr; however, for p > 140 Torr, the breakdown occurs outside the droplet and is dependent on pressure. Transition from the breakdown inside to outside the droplet takes place in the pressure region where the breakdown thresholds of the bulk liquid and the pure gas are approximately equal.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aerosol-induced laser breakdown thresholds: wavelength dependence

Ronald G. Pinnick, Petr Chýlek, M. Jarzembski, E. Creegan, V. Srivastava, Gilbert Fernandez, J. D. Pendleton, and A. Biswas
Appl. Opt. 27(5) 987-996 (1988)

Effect of spherical particles on laser-induced breakdown of gases

Petr Chýlek, Maurice A. Jarzembski, Vandana Srivastava, R. G. Pinnick, J. David Pendleton, and John P. Cruncleton
Appl. Opt. 26(5) 760-762 (1987)

Spectroscopic investigation of laser-initiated low-pressure plasmas in atmospheric gases

R. A. Armstrong, R. A. Lucht, and W. T. Rawlins
Appl. Opt. 22(10) 1573-1577 (1983)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription