Abstract

Laser-induced breakdown threshold intensities for helium, argon, xenon and clean air were measured as a function of pressure (p < 900 Torr) at wavelength λ = 0.532 μm using the Nd:YAG laser with 6.5-ns pulse duration. Pressure dependence of the breakdown of a 50-μm diam water droplet in these gases was also investigated. For pure gases, different free electron generation processes and electron loss processes dominate in different pressure regions. The water droplets decrease the breakdown thresholds up to 3 orders of magnitude depending on the pressure of the particular gas surrounding the droplet. For the droplet in He, Ar, and clean air for p < 800 Torr, the breakdown at the threshold intensity occurs inside the droplet and is independent of pressure. For the droplet in Xe, the breakdown occurs inside the droplet for p < 140 Torr; however, for p > 140 Torr, the breakdown occurs outside the droplet and is dependent on pressure. Transition from the breakdown inside to outside the droplet takes place in the pressure region where the breakdown thresholds of the bulk liquid and the pure gas are approximately equal.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. M. Ireland, “Gas Breakdown by Single, ~40ps–50ns, 1.06 μm Laser Pulses,” J. Phys. D 7, L179–L183 (1974).
    [CrossRef]
  2. R. J. Dewhurst, “Breakdown in the Rare Gases Using Single Picosecond Ruby Laser Pulses,” J. Phys. D 10, 283–289 (1977).
    [CrossRef]
  3. R. J. Dewhurst, “Comparative Data on Molecular Gas Breakdown Thresholds in High Laser-Radiation Fields,” J. Phys. D 11, L191–L195 (1978).
    [CrossRef]
  4. C. Gray Morgan, “Laser Induced Electrical Breakdown of Gases,” in Electrical Breakdown of Gases, J. M. Meek, Ed. (Wiley, New York, 1978).
  5. M. Young, M. Hercher, “Dynamics of Laser-Induced Breakdown in Gases,” J. Appl. Phys. 38, 4393–4400 (1967).
    [CrossRef]
  6. P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
    [CrossRef]
  7. P. Chylek, M. A. Jarzembski, V. Srivastava, R. G. Pinnick, J. D. Pendleton, J. P. Cruncleton, “Effect of Spherical Particles on Laser-Induced Breakdown of Gases,” Appl. Opt. 26, 760–762 (1987).
    [CrossRef] [PubMed]
  8. R. G. Pinnick et al., “Aerosol-Induced Laser Breakdown Thresholds: Wavelength Dependence,” Appl. Opt. 27, 987–996 (1988).
    [CrossRef] [PubMed]
  9. W.-F. Hsieh, J. H. Eickmans, R. K. Chang, “Internal and External Laser-Induced Avalanche Breakdown of Single Droplets in an Argon Atmosphere,” J. Opt. Soc. Am. B, 4, 1816–1820 (1987).
    [CrossRef]
  10. R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, J.-B. Zheng, “Laser-Induced Breakdown in Large Transparent Water Droplets,” Appl. Opt. 27, 2377–2385 (1988).
    [CrossRef] [PubMed]
  11. V. E. Mitsuk, V. I. Savoskin, V. A. Chernikov, “Breakdown at Optical Frequencies in the Presence of Diffusion Losses,” JETP Lett. 4, 88–90 (1966).
  12. R. W. Minck, W. G. Rado, “Investigation of Optical Frequency Breakdown Phenomena,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGrawHill, New York, 1966), p. 527.

1988 (2)

1987 (2)

1986 (1)

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

1978 (1)

R. J. Dewhurst, “Comparative Data on Molecular Gas Breakdown Thresholds in High Laser-Radiation Fields,” J. Phys. D 11, L191–L195 (1978).
[CrossRef]

1977 (1)

R. J. Dewhurst, “Breakdown in the Rare Gases Using Single Picosecond Ruby Laser Pulses,” J. Phys. D 10, 283–289 (1977).
[CrossRef]

1974 (1)

C. L. M. Ireland, “Gas Breakdown by Single, ~40ps–50ns, 1.06 μm Laser Pulses,” J. Phys. D 7, L179–L183 (1974).
[CrossRef]

1967 (1)

M. Young, M. Hercher, “Dynamics of Laser-Induced Breakdown in Gases,” J. Appl. Phys. 38, 4393–4400 (1967).
[CrossRef]

1966 (1)

V. E. Mitsuk, V. I. Savoskin, V. A. Chernikov, “Breakdown at Optical Frequencies in the Presence of Diffusion Losses,” JETP Lett. 4, 88–90 (1966).

Chang, R. K.

Chernikov, V. A.

V. E. Mitsuk, V. I. Savoskin, V. A. Chernikov, “Breakdown at Optical Frequencies in the Presence of Diffusion Losses,” JETP Lett. 4, 88–90 (1966).

Chou, N. Y.

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Chylek, P.

P. Chylek, M. A. Jarzembski, V. Srivastava, R. G. Pinnick, J. D. Pendleton, J. P. Cruncleton, “Effect of Spherical Particles on Laser-Induced Breakdown of Gases,” Appl. Opt. 26, 760–762 (1987).
[CrossRef] [PubMed]

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Cruncleton, J. P.

Dewhurst, R. J.

R. J. Dewhurst, “Comparative Data on Molecular Gas Breakdown Thresholds in High Laser-Radiation Fields,” J. Phys. D 11, L191–L195 (1978).
[CrossRef]

R. J. Dewhurst, “Breakdown in the Rare Gases Using Single Picosecond Ruby Laser Pulses,” J. Phys. D 10, 283–289 (1977).
[CrossRef]

Eickmans, J. H.

Gray Morgan, C.

C. Gray Morgan, “Laser Induced Electrical Breakdown of Gases,” in Electrical Breakdown of Gases, J. M. Meek, Ed. (Wiley, New York, 1978).

Hercher, M.

M. Young, M. Hercher, “Dynamics of Laser-Induced Breakdown in Gases,” J. Appl. Phys. 38, 4393–4400 (1967).
[CrossRef]

Hsieh, W.-F.

Ireland, C. L. M.

C. L. M. Ireland, “Gas Breakdown by Single, ~40ps–50ns, 1.06 μm Laser Pulses,” J. Phys. D 7, L179–L183 (1974).
[CrossRef]

Jarzembski, M. A.

P. Chylek, M. A. Jarzembski, V. Srivastava, R. G. Pinnick, J. D. Pendleton, J. P. Cruncleton, “Effect of Spherical Particles on Laser-Induced Breakdown of Gases,” Appl. Opt. 26, 760–762 (1987).
[CrossRef] [PubMed]

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

Minck, R. W.

R. W. Minck, W. G. Rado, “Investigation of Optical Frequency Breakdown Phenomena,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGrawHill, New York, 1966), p. 527.

Mitsuk, V. E.

V. E. Mitsuk, V. I. Savoskin, V. A. Chernikov, “Breakdown at Optical Frequencies in the Presence of Diffusion Losses,” JETP Lett. 4, 88–90 (1966).

Pendleton, J. D.

Pinnick, R. G.

Rado, W. G.

R. W. Minck, W. G. Rado, “Investigation of Optical Frequency Breakdown Phenomena,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGrawHill, New York, 1966), p. 527.

Savoskin, V. I.

V. E. Mitsuk, V. I. Savoskin, V. A. Chernikov, “Breakdown at Optical Frequencies in the Presence of Diffusion Losses,” JETP Lett. 4, 88–90 (1966).

Srivastava, V.

Wood, C. F.

Young, M.

M. Young, M. Hercher, “Dynamics of Laser-Induced Breakdown in Gases,” J. Appl. Phys. 38, 4393–4400 (1967).
[CrossRef]

Zhang, J.-Z.

Zheng, J.-B.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Chylek, M. A. Jarzembski, N. Y. Chou, R. G. Pinnick, “Effect of Size and Material of Liquid Spherical Particles on Laser-Induced Breakdown,” Appl. Phys. Lett. 49, 1475–1477 (1986).
[CrossRef]

J. Appl. Phys. (1)

M. Young, M. Hercher, “Dynamics of Laser-Induced Breakdown in Gases,” J. Appl. Phys. 38, 4393–4400 (1967).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (3)

C. L. M. Ireland, “Gas Breakdown by Single, ~40ps–50ns, 1.06 μm Laser Pulses,” J. Phys. D 7, L179–L183 (1974).
[CrossRef]

R. J. Dewhurst, “Breakdown in the Rare Gases Using Single Picosecond Ruby Laser Pulses,” J. Phys. D 10, 283–289 (1977).
[CrossRef]

R. J. Dewhurst, “Comparative Data on Molecular Gas Breakdown Thresholds in High Laser-Radiation Fields,” J. Phys. D 11, L191–L195 (1978).
[CrossRef]

JETP Lett. (1)

V. E. Mitsuk, V. I. Savoskin, V. A. Chernikov, “Breakdown at Optical Frequencies in the Presence of Diffusion Losses,” JETP Lett. 4, 88–90 (1966).

Other (2)

R. W. Minck, W. G. Rado, “Investigation of Optical Frequency Breakdown Phenomena,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGrawHill, New York, 1966), p. 527.

C. Gray Morgan, “Laser Induced Electrical Breakdown of Gases,” in Electrical Breakdown of Gases, J. M. Meek, Ed. (Wiley, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The source function S of the droplet along its axis, both inside and outside of the droplet (droplet surface defined by −1, +1 on the horizontal axis).

Fig. 2
Fig. 2

Breakdown threshold intensities for He, Ar, and Xe gases and 50-μm water droplets in these gases irradiated with 6.5 ns flashes of 0.532-μm radiation. Only the droplet-in-Xe shows a pressure dependence of ITH in the pressure region investigated.

Fig. 3
Fig. 3

Breakdown threshold intensity at λ = 0.532 μm for clean air (α = 0.45 ± 0.01) and 50-μm water droplets in clean air. Threshold intensity ITH(droplet) is independent of the pressure of the surrounding gas in the pressure region investigated.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I TH 1 / p α ,
I TH 1 / p ,
I TH 1 / p 1 / k
I TH = I TH gain + I loss

Metrics