Abstract

A CdTe phase modulator and low power rf source have been used with Pb-salt tunable diode lasers operating near 8 μm to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, “Frequency-Modulation Spectroscopy: a New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  2. E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
    [CrossRef]
  3. E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
    [CrossRef]
  4. D. E. Cooper, T. F. Gallagher, “Double Frequency Modulation Spectroscopy: High Modulation Frequency with Low Bandwidth Detectors,” Appl. Opt. 24, 1327–1334 (1985).
    [CrossRef] [PubMed]
  5. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. 2, 1510–1526 (1985).
    [CrossRef]
  6. C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Tone-Burst Modulated Color-Center-Laser Spectroscopy,” Opt. lett. 8, 310–312 (1983).
    [CrossRef] [PubMed]
  7. H. Adams, J. L. Hall, R. F. Curl, J. V. V. Kasper, F. K. Tittel, “Sensitivity Improvement of Tone-Burst Modulated Spectroscopy with a Color-Center Laser,” J. Opt. Soc. Am. B 1, 710–714 (1984).
    [CrossRef]
  8. D. E. Cooper, T. F. Gallagher, “Frequency Modulation Spectroscopy with a CO2 Laser: Results and Implications for Ultra-sensitive Point Monitoring of the Atmosphere,” Appl. Opt. 24, 710–716 (1985).
    [CrossRef]
  9. G. Melandrone, F. Cappellani, G. Restelli, “Frequency Jitter from Mechanical Vibrations in a Diode Laser Mounted on a Closed-Cycle Refrigerator, Appl. Spectrosc. 39, 63–00 (1985).
    [CrossRef]
  10. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-PPT Level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  11. D. E. Jennings, “Laboratory Diode Laser Spectroscopy in Molecular Planetary Astronomy,” J. Quant. Spectrosc. Radiat. Trans. SRT 40, 221–238 (1988).
    [CrossRef]
  12. M. Gehrtz, W. L. Lenth, A. T. Young, H. S. Johnston, “High-Frequency Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132–134 (1986).
    [CrossRef] [PubMed]
  13. D. E. Cooper, J. P. Watjen, “Two-tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606–608 (1986).
    [CrossRef] [PubMed]
  14. D. E. Cooper, R. E. Warren, “Atmospheric Trace Gas Detection Using High-Frequency Optical Heterodyne Spectroscopy,” Proceedings of the OSA/IEEE Conference on Lasers and Electro-Optics, Baltimore MD, April 26–May 1, 1987, paper MA2.
  15. N. Y. Chou, G. W. Sachse, “Single-Tone and Two-Tone AM-FM Spectral Calculations for Tunable Diode Laser Absorption Spectroscopy,” Appl. Opt. 26, 3584–3587 (1987).
    [CrossRef] [PubMed]
  16. J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Double Heterostructure Lead-Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988).
    [CrossRef] [PubMed]
  17. M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986).
    [CrossRef] [PubMed]
  18. J. J. Hillman, D. E. Jennings, J. L. Faris, “Diode Laser–CO2 Laser Heterodyne Spectrometer: Measurement of 2sQ(1,1) in 2ν2–ν2 of NH3,” Appl. Opt. 18, 1808–1811 (1979).
    [CrossRef] [PubMed]
  19. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth Measurements of Tunable Diode Lasers Using Heterodyne and Etalon Techniques,” Appl. Opt. 21, 3961–3965 (1982).
    [CrossRef] [PubMed]
  20. G. C. Bjorklund, M. D. Levenson, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  21. E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, “Residual Amplitude Modulation in Laser Electro-Optic Phase Modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
    [CrossRef]
  22. C. N. Harward, B. D. Sidney, “Excess Noise in Pb1−xSnxSe Semiconductor Lasers,” NASA Heterodyne Systems and Technology Conference, NASA CP-2138, Williamsburg, VA, (1980).

1988 (2)

D. E. Jennings, “Laboratory Diode Laser Spectroscopy in Molecular Planetary Astronomy,” J. Quant. Spectrosc. Radiat. Trans. SRT 40, 221–238 (1988).
[CrossRef]

J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Double Heterostructure Lead-Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (3)

1985 (5)

1984 (2)

E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
[CrossRef]

H. Adams, J. L. Hall, R. F. Curl, J. V. V. Kasper, F. K. Tittel, “Sensitivity Improvement of Tone-Burst Modulated Spectroscopy with a Color-Center Laser,” J. Opt. Soc. Am. B 1, 710–714 (1984).
[CrossRef]

1983 (3)

C. S. Gudeman, M. H. Begemann, J. Pfaff, R. J. Saykally, “Tone-Burst Modulated Color-Center-Laser Spectroscopy,” Opt. lett. 8, 310–312 (1983).
[CrossRef] [PubMed]

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1982 (1)

1980 (2)

1979 (1)

Adams, H.

Ballik, E. A.

Begemann, M. H.

Bjorklund, G. C.

M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. 2, 1510–1526 (1985).
[CrossRef]

E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, “Residual Amplitude Modulation in Laser Electro-Optic Phase Modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
[CrossRef]

E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
[CrossRef]

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

G. C. Bjorklund, “Frequency-Modulation Spectroscopy: a New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15–17 (1980).
[CrossRef] [PubMed]

Cappellani, F.

Cassidy, D. T.

Chou, N. Y.

Clar, H. J.

Cooper, D. E.

Curl, R. F.

El-Sherbiny, M.

Faris, J. L.

Gallagher, T. F.

Garside, B. K.

Gehrtz, M.

Gudeman, C. S.

Hall, J. L.

Harward, C. N.

C. N. Harward, B. D. Sidney, “Excess Noise in Pb1−xSnxSe Semiconductor Lasers,” NASA Heterodyne Systems and Technology Conference, NASA CP-2138, Williamsburg, VA, (1980).

Hillman, J. J.

Hunziker, H. E.

E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
[CrossRef]

Jennings, D. E.

D. E. Jennings, “Laboratory Diode Laser Spectroscopy in Molecular Planetary Astronomy,” J. Quant. Spectrosc. Radiat. Trans. SRT 40, 221–238 (1988).
[CrossRef]

J. J. Hillman, D. E. Jennings, J. L. Faris, “Diode Laser–CO2 Laser Heterodyne Spectrometer: Measurement of 2sQ(1,1) in 2ν2–ν2 of NH3,” Appl. Opt. 18, 1808–1811 (1979).
[CrossRef] [PubMed]

Johnston, H. S.

Kasper, J. V. V.

Lenth, W. L.

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Melandrone, G.

Menzies, R. T.

Pfaff, J.

Pokrowsky, P.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

Reich, M.

Reid, J.

Restelli, G.

Roche, K.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

Sachse, G. W.

Saykally, R. J.

Schieder, R.

Sidney, B. D.

C. N. Harward, B. D. Sidney, “Excess Noise in Pb1−xSnxSe Semiconductor Lasers,” NASA Heterodyne Systems and Technology Conference, NASA CP-2138, Williamsburg, VA, (1980).

Silver, J. A.

Stanton, A. C.

Tittel, F. K.

Warren, R. E.

D. E. Cooper, R. E. Warren, “Atmospheric Trace Gas Detection Using High-Frequency Optical Heterodyne Spectroscopy,” Proceedings of the OSA/IEEE Conference on Lasers and Electro-Optics, Baltimore MD, April 26–May 1, 1987, paper MA2.

Watjen, J. P.

Wendt, H. R.

E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
[CrossRef]

Whittaker, E. A.

M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. 2, 1510–1526 (1985).
[CrossRef]

E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, “Residual Amplitude Modulation in Laser Electro-Optic Phase Modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985).
[CrossRef]

E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
[CrossRef]

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

Winnewisser, G.

Young, A. T.

Zapka, W.

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

Appl. Opt. (8)

D. E. Cooper, T. F. Gallagher, “Double Frequency Modulation Spectroscopy: High Modulation Frequency with Low Bandwidth Detectors,” Appl. Opt. 24, 1327–1334 (1985).
[CrossRef] [PubMed]

D. E. Cooper, T. F. Gallagher, “Frequency Modulation Spectroscopy with a CO2 Laser: Results and Implications for Ultra-sensitive Point Monitoring of the Atmosphere,” Appl. Opt. 24, 710–716 (1985).
[CrossRef]

N. Y. Chou, G. W. Sachse, “Single-Tone and Two-Tone AM-FM Spectral Calculations for Tunable Diode Laser Absorption Spectroscopy,” Appl. Opt. 26, 3584–3587 (1987).
[CrossRef] [PubMed]

J. A. Silver, A. C. Stanton, “Two-Tone Optical Heterodyne Spectroscopy Using Buried Double Heterostructure Lead-Salt Diode Lasers,” Appl. Opt. 27, 4438–4444 (1988).
[CrossRef] [PubMed]

M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130–135 (1986).
[CrossRef] [PubMed]

J. J. Hillman, D. E. Jennings, J. L. Faris, “Diode Laser–CO2 Laser Heterodyne Spectrometer: Measurement of 2sQ(1,1) in 2ν2–ν2 of NH3,” Appl. Opt. 18, 1808–1811 (1979).
[CrossRef] [PubMed]

J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth Measurements of Tunable Diode Lasers Using Heterodyne and Etalon Techniques,” Appl. Opt. 21, 3961–3965 (1982).
[CrossRef] [PubMed]

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity Limits of a Tunable Diode Laser Spectrometer, with Application to the Detection of NO2 at the 100-PPT Level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

Appl. Phys. B (2)

G. C. Bjorklund, M. D. Levenson, “Frequency Modulation (FM) Spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

E. A. Whittaker, H. R. Wendt, H. E. Hunziker, G. C. Bjorklund, “Laser FM Spectroscopy with Photochemical Modulation,” Appl. Phys. B 35, 105–111 (1984).
[CrossRef]

Appl. Spectrosc. (1)

J. Opt. Soc. Am. (1)

M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. 2, 1510–1526 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Trans. (1)

E. A. Whittaker, P. Pokrowsky, W. Zapka, K. Roche, G. C. Bjorklund, “Improved Laser Technique for High Sensitivity Atomic Absorption Spectroscopy in Flames,” J. Quant. Spectrosc. Radiat. Trans. 30, 289–296 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Trans. SRT (1)

D. E. Jennings, “Laboratory Diode Laser Spectroscopy in Molecular Planetary Astronomy,” J. Quant. Spectrosc. Radiat. Trans. SRT 40, 221–238 (1988).
[CrossRef]

Opt. Lett. (3)

Other (2)

C. N. Harward, B. D. Sidney, “Excess Noise in Pb1−xSnxSe Semiconductor Lasers,” NASA Heterodyne Systems and Technology Conference, NASA CP-2138, Williamsburg, VA, (1980).

D. E. Cooper, R. E. Warren, “Atmospheric Trace Gas Detection Using High-Frequency Optical Heterodyne Spectroscopy,” Proceedings of the OSA/IEEE Conference on Lasers and Electro-Optics, Baltimore MD, April 26–May 1, 1987, paper MA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic process for generating suppressed sideband optical beat signals.

Fig. 2
Fig. 2

Optical layout of the EOM experiment, configured for locking the TDL to a spectral line. The layout was altered slightly in order to perform first derivative spectroscopy of weak CH4 lines (see text).

Fig. 3
Fig. 3

Electro-optically generated TDL beat signal at four positions in a 3-in. Ge etalon fringe pattern (f m = 7.1 MHz, M = 0.2, and P1 ~ 50, μW).

Fig. 4
Fig. 4

Simultaneous sweep-averaged transmittance and first derivative spectra of weak CH4 lines, obtained from wideband phase-sensitive detection of the sideband imbalance signal. The feature marked with an asterisk is associated with changing optical gain in the TDL.

Fig. 5
Fig. 5

Scanning etalon fringe patterns of a TDL operating single-mode at one current setting. Successive patterns are recorded ~3 min apart. In (a), the diode is free running, and in (b) it is lock-loop stabilized to a 15% CH4 absorption line with a carrier to sideband spacing of 21 MHz. The fringes appear broadened in (a) due to TDL frequency jitter, and also drift with time because of slow changes in the diode mount temperature.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 2 = E 0 k = - + J k ( M ) exp [ i ( ω c + k ω m ) t ]
E 3 { 1 + T + T c M 2 exp [ i ( ω m t + δ ) ] - T - T c M 2 exp [ - i ( ω m t + δ ) ] } T c E 1 .
P 3 P 1 T c 2 [ 1 + M ( T + - T - T c ) ( cos ω m t - δ sin ω m t ) ] .
i t = 2 π η e h ω c P .
R = 2 π η e h ω c R L .
S out = R P 1 T c 2 [ 1 + M ( T + - T - T c ) cos ω m t ] .
V s n = R L [ 4 π η e 2 h ω c P 1 T c 2 BW ] 1 / 2 .

Metrics