Abstract

A new light scattering facility utilizes a laser particle levitation technique to measure the angular distribution of light scattered by solid particles of size range 10–100 μm, over a range of scattering angles between 16 and 167°. The performance of the facility is illustrated by an excellent match between the observed scattering from a 33 μm-diam sphere and Mie theory prediction.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Giese, E. Grun, “The Compatibility of Recent Micrometeoroid Flux Curves with Observations and Models of the Zodiacal Light,” in Interplanetary Dust and Zodiacal LightH. Elsasser, H. Fechtig, Eds., (Springer Velag, Berlin, 1976), p. 135.
    [CrossRef]
  2. C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).
  3. R. H. Zerull, R. H. Giese, K. Weiss, “Scattering Functions of Nonspherical Dielectric and Absorbing Particles vs Mie Theory,” Appl. Opt. 16, 777–778 (1977).
    [PubMed]
  4. K. Weiss-Wrana, R. H. Giese, R. H. Zerull, “Microwave and Laser Facilities to Determine Scattering and Colour Signatures Related to the Physical Properties of Dust Particles,” Properties and Interactions of Interplanetary Dust, R. H. Giese, P. Lamy, Eds. (D. Reidel, Dordrecht, 1985), p. 219.
    [CrossRef]
  5. P. Bliek, Ph. L. Lamy, G. Courtes, “Preliminary Results of a Dust Scattering Experiment,” Properties and Interactions of Interplanetary DustR. H. Giese, P. Lamy, Eds., (D. Reidel, Dordrecht, 1985), p. 231.
    [CrossRef]
  6. A. C. Lind, R. T. Wang, J. M. Greenberg, “Microwave Scattering by Nonspherical Particles,” Appl. Opt. 4, 1555–1561 (1965).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]
  8. K. F. Ratcliff, N. Y. Misconi, S. J. Paddack, “Radiation Induced Rotation of Interplanetary Dust Particles; a Feasibility Study for a Space Experiment,” Solid Particles in the Solar SystemI. Halliday, B. A. McIntosh, Eds. (D. Reidel, Dordrecht, 1980), p. 391.
    [CrossRef]
  9. A. Ashkin, J. M. Dziedzic, “Observation of Light Scattering from Nonspherical Particles Using Optical Levitation,” Appl. Opt. 19, 660–668 (1980).
    [CrossRef] [PubMed]
  10. T. R. Marshall, C. S. Parmenter, M. Seaver, “Characterization of Polymer Latex Aerosols by Rapid Measurement of 360° Light Scattering Patterns from Individual Particles,” J. Coll. Int. Sci. 55, 624–636 (1976).
    [CrossRef]
  11. M. Bartholdi, G. C. Salzman, R. D. Hiebert, M. Kerker, “Differential Light Scattering Photometer for Rapid Analysis of Single Particles in Flow,” Appl. Opt. 19, 1573–1581 (1980).
    [CrossRef] [PubMed]
  12. D. T. Phillips, P. J. Wyatt, R. M. Berkman, “Measurement of the Lorenz-Mie Scattering of a Single Particle: Polystyrene Latex,” J. Coll. Int. Sci. 34, 159–162 (1970).
    [CrossRef]
  13. S. O. Park, S. S. Lee, “Forward Far-Field Pattern on a Laser Beam Scattered by a Water-Suspended Homogeneous Sphere Trapped by a Focused Laser Beam,” J. Opt. Soc. Am. A 4, 417–422 (1987).
    [CrossRef]
  14. G. Grehan, G. Gouesbet, “Optical Levitation of a Single Particle to Study the Theory of Quasi-elastic Scattering of Light,” Appl. Opt. 19, 2485–2487 (1980).
    [CrossRef] [PubMed]
  15. G. Grehan, B. Maheu, G. Gouesbet, “Scattering of Light Beams by Mie Scatter Centers: Numerical Results Using a Localized Approximation,” Appl. Opt. 25, 3539–3548 (1986).
    [CrossRef] [PubMed]
  16. Cosmic Dust Catalog, Planetary Materials Branch, NASA, LBJ Space Center, Houston, Texas.
  17. H. Chew, M. Kerker, D. D. Cooke, “Light Scattering in Converging Beams,” Opt. Lett. 1, 138–140 (1977).
    [CrossRef] [PubMed]
  18. N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
    [CrossRef]
  19. W. C. Tsai, R. J. Pogorzelski, “Eigenfunction Solution of the Scattering of Beam Radiation Fields by Spherical Objects,” J. Opt. Soc. Am. 65, 1457–1463 (1975).
    [CrossRef]
  20. W. G. Tam, R. Corriveau, “Scattering of Electromagnetic Beams by Spherical Objects, J. Opt. Soc. Am. 68, 763–767 (1978).
    [CrossRef]
  21. J. S. Kim, S. S. Lee, “Scattering of Laser Beams and the Optical Potential Well for a Homogeneous Sphere,” J. Opt. Soc. Am. 73, 303–312 (1983).
    [CrossRef]

1987 (1)

1986 (1)

1983 (1)

1980 (3)

1978 (1)

1977 (2)

1976 (2)

C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).

T. R. Marshall, C. S. Parmenter, M. Seaver, “Characterization of Polymer Latex Aerosols by Rapid Measurement of 360° Light Scattering Patterns from Individual Particles,” J. Coll. Int. Sci. 55, 624–636 (1976).
[CrossRef]

1975 (1)

1971 (1)

A. Ashkin, J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1970 (1)

D. T. Phillips, P. J. Wyatt, R. M. Berkman, “Measurement of the Lorenz-Mie Scattering of a Single Particle: Polystyrene Latex,” J. Coll. Int. Sci. 34, 159–162 (1970).
[CrossRef]

1968 (1)

N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
[CrossRef]

1965 (1)

Ashkin, A.

Bartholdi, M.

Berkman, R. M.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, “Measurement of the Lorenz-Mie Scattering of a Single Particle: Polystyrene Latex,” J. Coll. Int. Sci. 34, 159–162 (1970).
[CrossRef]

Bliek, P.

P. Bliek, Ph. L. Lamy, G. Courtes, “Preliminary Results of a Dust Scattering Experiment,” Properties and Interactions of Interplanetary DustR. H. Giese, P. Lamy, Eds., (D. Reidel, Dordrecht, 1985), p. 231.
[CrossRef]

Chew, H.

Cooke, D. D.

Corriveau, R.

Courtes, G.

P. Bliek, Ph. L. Lamy, G. Courtes, “Preliminary Results of a Dust Scattering Experiment,” Properties and Interactions of Interplanetary DustR. H. Giese, P. Lamy, Eds., (D. Reidel, Dordrecht, 1985), p. 231.
[CrossRef]

Dziedzic, J. M.

Giese, R.

C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).

R. Giese, E. Grun, “The Compatibility of Recent Micrometeoroid Flux Curves with Observations and Models of the Zodiacal Light,” in Interplanetary Dust and Zodiacal LightH. Elsasser, H. Fechtig, Eds., (Springer Velag, Berlin, 1976), p. 135.
[CrossRef]

Giese, R. H.

R. H. Zerull, R. H. Giese, K. Weiss, “Scattering Functions of Nonspherical Dielectric and Absorbing Particles vs Mie Theory,” Appl. Opt. 16, 777–778 (1977).
[PubMed]

K. Weiss-Wrana, R. H. Giese, R. H. Zerull, “Microwave and Laser Facilities to Determine Scattering and Colour Signatures Related to the Physical Properties of Dust Particles,” Properties and Interactions of Interplanetary Dust, R. H. Giese, P. Lamy, Eds. (D. Reidel, Dordrecht, 1985), p. 219.
[CrossRef]

Gouesbet, G.

Greenberg, J. M.

Grehan, G.

Grun, E.

R. Giese, E. Grun, “The Compatibility of Recent Micrometeoroid Flux Curves with Observations and Models of the Zodiacal Light,” in Interplanetary Dust and Zodiacal LightH. Elsasser, H. Fechtig, Eds., (Springer Velag, Berlin, 1976), p. 135.
[CrossRef]

Hiebert, R. D.

Kerker, M.

Kim, J. S.

Lamy, Ph. L.

P. Bliek, Ph. L. Lamy, G. Courtes, “Preliminary Results of a Dust Scattering Experiment,” Properties and Interactions of Interplanetary DustR. H. Giese, P. Lamy, Eds., (D. Reidel, Dordrecht, 1985), p. 231.
[CrossRef]

Lee, S. S.

Leinert, C.

C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).

Lind, A. C.

Link, H.

C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).

Maheu, B.

Marshall, T. R.

T. R. Marshall, C. S. Parmenter, M. Seaver, “Characterization of Polymer Latex Aerosols by Rapid Measurement of 360° Light Scattering Patterns from Individual Particles,” J. Coll. Int. Sci. 55, 624–636 (1976).
[CrossRef]

Misconi, N. Y.

K. F. Ratcliff, N. Y. Misconi, S. J. Paddack, “Radiation Induced Rotation of Interplanetary Dust Particles; a Feasibility Study for a Space Experiment,” Solid Particles in the Solar SystemI. Halliday, B. A. McIntosh, Eds. (D. Reidel, Dordrecht, 1980), p. 391.
[CrossRef]

Morita, N.

N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
[CrossRef]

Nakanishi, Y.

N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
[CrossRef]

Paddack, S. J.

K. F. Ratcliff, N. Y. Misconi, S. J. Paddack, “Radiation Induced Rotation of Interplanetary Dust Particles; a Feasibility Study for a Space Experiment,” Solid Particles in the Solar SystemI. Halliday, B. A. McIntosh, Eds. (D. Reidel, Dordrecht, 1980), p. 391.
[CrossRef]

Park, S. O.

Parmenter, C. S.

T. R. Marshall, C. S. Parmenter, M. Seaver, “Characterization of Polymer Latex Aerosols by Rapid Measurement of 360° Light Scattering Patterns from Individual Particles,” J. Coll. Int. Sci. 55, 624–636 (1976).
[CrossRef]

Phillips, D. T.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, “Measurement of the Lorenz-Mie Scattering of a Single Particle: Polystyrene Latex,” J. Coll. Int. Sci. 34, 159–162 (1970).
[CrossRef]

Pitz, E.

C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).

Pogorzelski, R. J.

Ratcliff, K. F.

K. F. Ratcliff, N. Y. Misconi, S. J. Paddack, “Radiation Induced Rotation of Interplanetary Dust Particles; a Feasibility Study for a Space Experiment,” Solid Particles in the Solar SystemI. Halliday, B. A. McIntosh, Eds. (D. Reidel, Dordrecht, 1980), p. 391.
[CrossRef]

Salzman, G. C.

Seaver, M.

T. R. Marshall, C. S. Parmenter, M. Seaver, “Characterization of Polymer Latex Aerosols by Rapid Measurement of 360° Light Scattering Patterns from Individual Particles,” J. Coll. Int. Sci. 55, 624–636 (1976).
[CrossRef]

Tam, W. G.

Tanaka, T.

N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
[CrossRef]

Tsai, W. C.

Wang, R. T.

Weiss, K.

Weiss-Wrana, K.

K. Weiss-Wrana, R. H. Giese, R. H. Zerull, “Microwave and Laser Facilities to Determine Scattering and Colour Signatures Related to the Physical Properties of Dust Particles,” Properties and Interactions of Interplanetary Dust, R. H. Giese, P. Lamy, Eds. (D. Reidel, Dordrecht, 1985), p. 219.
[CrossRef]

Wyatt, P. J.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, “Measurement of the Lorenz-Mie Scattering of a Single Particle: Polystyrene Latex,” J. Coll. Int. Sci. 34, 159–162 (1970).
[CrossRef]

Yamasaki, T.

N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
[CrossRef]

Zerull, R. H.

R. H. Zerull, R. H. Giese, K. Weiss, “Scattering Functions of Nonspherical Dielectric and Absorbing Particles vs Mie Theory,” Appl. Opt. 16, 777–778 (1977).
[PubMed]

K. Weiss-Wrana, R. H. Giese, R. H. Zerull, “Microwave and Laser Facilities to Determine Scattering and Colour Signatures Related to the Physical Properties of Dust Particles,” Properties and Interactions of Interplanetary Dust, R. H. Giese, P. Lamy, Eds. (D. Reidel, Dordrecht, 1985), p. 219.
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

A. Ashkin, J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Astron. and Astrophys. (1)

C. Leinert, H. Link, E. Pitz, R. Giese, “Interpretation of a Rocket Photometry of the Inner Zodiacal Light,” Astron. and Astrophys. 47, 221–230 (1976).

IEEE Trans. Antennas Propag. (1)

N. Morita, T. Tanaka, T. Yamasaki, Y. Nakanishi, “Scattering of a Beam Wave by a Spherical Object,” IEEE Trans. Antennas Propag. AP-16, 724–727 (1968).
[CrossRef]

J. Coll. Int. Sci. (2)

T. R. Marshall, C. S. Parmenter, M. Seaver, “Characterization of Polymer Latex Aerosols by Rapid Measurement of 360° Light Scattering Patterns from Individual Particles,” J. Coll. Int. Sci. 55, 624–636 (1976).
[CrossRef]

D. T. Phillips, P. J. Wyatt, R. M. Berkman, “Measurement of the Lorenz-Mie Scattering of a Single Particle: Polystyrene Latex,” J. Coll. Int. Sci. 34, 159–162 (1970).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (5)

Cosmic Dust Catalog, Planetary Materials Branch, NASA, LBJ Space Center, Houston, Texas.

K. Weiss-Wrana, R. H. Giese, R. H. Zerull, “Microwave and Laser Facilities to Determine Scattering and Colour Signatures Related to the Physical Properties of Dust Particles,” Properties and Interactions of Interplanetary Dust, R. H. Giese, P. Lamy, Eds. (D. Reidel, Dordrecht, 1985), p. 219.
[CrossRef]

P. Bliek, Ph. L. Lamy, G. Courtes, “Preliminary Results of a Dust Scattering Experiment,” Properties and Interactions of Interplanetary DustR. H. Giese, P. Lamy, Eds., (D. Reidel, Dordrecht, 1985), p. 231.
[CrossRef]

K. F. Ratcliff, N. Y. Misconi, S. J. Paddack, “Radiation Induced Rotation of Interplanetary Dust Particles; a Feasibility Study for a Space Experiment,” Solid Particles in the Solar SystemI. Halliday, B. A. McIntosh, Eds. (D. Reidel, Dordrecht, 1980), p. 391.
[CrossRef]

R. Giese, E. Grun, “The Compatibility of Recent Micrometeoroid Flux Curves with Observations and Models of the Zodiacal Light,” in Interplanetary Dust and Zodiacal LightH. Elsasser, H. Fechtig, Eds., (Springer Velag, Berlin, 1976), p. 135.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical forces resulting from variations in the intensity profile of the incident radiation for a highly transparent particle and a highly reflective particle.

Fig. 2
Fig. 2

Sketch of the overall layout of the apparatus showing the various components used in this experiment.

Fig. 3
Fig. 3

Sketch of the associated controls, goniometer, camera system, and the microcomputer that controls the instrument.

Fig. 4
Fig. 4

Scattering of laser light (λ = 514.5 nm) off of a 34.09 μm sphere of suprasil glass similar to the one in Figure 2. The experimental measurements (dots) are compared to Mie theory (curve); the size of the sphere is determined from this agreement. The top curve was taken when the electric vector of the incident beam was perpendicular to the scattering plane and the bottom curve (shifted down by a factor of 10) with the polarization vector in the scattering plane.

Fig. 5
Fig. 5

Variation in three theoretical Mie scattering curves where the particle diameters vary from 34.08–34.10 μm. Here each successive curve has been lowered by a displacement of .75 in log I for clarity.

Metrics