Abstract

Angular scattering measurements on fluoride glass fibers or bulk samples are reported. Patterns obtained on crystallites or bubbles give several peaks which are dependent on particle size and refractive index. Peak positions and scattering levels on the experimental curves are interpreted using Mie scattering theory. Particle sizing is possible and the refractive index can be estimated.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hattori, S. Sakaguchi, T. Kanamori, Y. Terunuma, “Scattering Characteristics of Crystallites in Fluoride Optical Fibers,” Appl. Opt. 26, 2683–2687 (1987).
    [CrossRef]
  2. M. W. Moore, P. W. France, S. F. Carter, J. R. Williams, “Scattering Losses in Fluoride Glass Fibre,” in Proceedings, Fifth International Symposium on Halide Glasses, Shizuoka, Japan (May–June 1988).
  3. D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
    [CrossRef]
  4. P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).
  5. S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
    [CrossRef]
  6. G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
    [CrossRef]
  7. T. Kanamori, H. Hattori, S. Sakaguchi, Y. Ohishi, “Study on the Nature of Extrinsic Scattering Centers in Fluoride Glass Optical Fibers,” Jpn. J. Appl. Phys. 25, L203–L205 (1986).
    [CrossRef]
  8. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  9. Ref. 8, Chap. 5–7.
  10. Ref. 8, Chap. 4.
  11. Ref. 8, Chap. 13.
  12. W. J. Lentz, “Generating Bessel Functions in Mie Scattering Calculations Using Continued Fractions,” Appl. Opt. 15, 668–671 (1976).
    [CrossRef] [PubMed]
  13. H. Hattori, Y. Ohishi, T. Kanamori, S. Takahashi, “Scattering Loss Measurement for Small Segments of Fluoride Optical Fibers,” Appl. Opt. 25, 3549–3551 (1986).
    [CrossRef] [PubMed]

1987 (3)

P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

H. Hattori, S. Sakaguchi, T. Kanamori, Y. Terunuma, “Scattering Characteristics of Crystallites in Fluoride Optical Fibers,” Appl. Opt. 26, 2683–2687 (1987).
[CrossRef]

1986 (3)

H. Hattori, Y. Ohishi, T. Kanamori, S. Takahashi, “Scattering Loss Measurement for Small Segments of Fluoride Optical Fibers,” Appl. Opt. 25, 3549–3551 (1986).
[CrossRef] [PubMed]

G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
[CrossRef]

T. Kanamori, H. Hattori, S. Sakaguchi, Y. Ohishi, “Study on the Nature of Extrinsic Scattering Centers in Fluoride Glass Optical Fibers,” Jpn. J. Appl. Phys. 25, L203–L205 (1986).
[CrossRef]

1983 (1)

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

1976 (1)

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Burk, M. J.

G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
[CrossRef]

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Carter, S. F.

P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).

M. W. Moore, P. W. France, S. F. Carter, J. R. Williams, “Scattering Losses in Fluoride Glass Fibre,” in Proceedings, Fifth International Symposium on Halide Glasses, Shizuoka, Japan (May–June 1988).

Day, C. R.

P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).

Fisher, C. F.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

France, P. W.

P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).

M. W. Moore, P. W. France, S. F. Carter, J. R. Williams, “Scattering Losses in Fluoride Glass Fibre,” in Proceedings, Fifth International Symposium on Halide Glasses, Shizuoka, Japan (May–June 1988).

Fujiura, K.

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

Hattori, H.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Kanamori, T.

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

H. Hattori, S. Sakaguchi, T. Kanamori, Y. Terunuma, “Scattering Characteristics of Crystallites in Fluoride Optical Fibers,” Appl. Opt. 26, 2683–2687 (1987).
[CrossRef]

T. Kanamori, H. Hattori, S. Sakaguchi, Y. Ohishi, “Study on the Nature of Extrinsic Scattering Centers in Fluoride Glass Optical Fibers,” Jpn. J. Appl. Phys. 25, L203–L205 (1986).
[CrossRef]

H. Hattori, Y. Ohishi, T. Kanamori, S. Takahashi, “Scattering Loss Measurement for Small Segments of Fluoride Optical Fibers,” Appl. Opt. 25, 3549–3551 (1986).
[CrossRef] [PubMed]

Lentz, W. J.

Levin, K. H.

G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
[CrossRef]

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Lu, G.

G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
[CrossRef]

Moore, M. W.

P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).

M. W. Moore, P. W. France, S. F. Carter, J. R. Williams, “Scattering Losses in Fluoride Glass Fibre,” in Proceedings, Fifth International Symposium on Halide Glasses, Shizuoka, Japan (May–June 1988).

Ohishi, Y.

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

H. Hattori, Y. Ohishi, T. Kanamori, S. Takahashi, “Scattering Loss Measurement for Small Segments of Fluoride Optical Fibers,” Appl. Opt. 25, 3549–3551 (1986).
[CrossRef] [PubMed]

T. Kanamori, H. Hattori, S. Sakaguchi, Y. Ohishi, “Study on the Nature of Extrinsic Scattering Centers in Fluoride Glass Optical Fibers,” Jpn. J. Appl. Phys. 25, L203–L205 (1986).
[CrossRef]

Sakaguchi, S.

H. Hattori, S. Sakaguchi, T. Kanamori, Y. Terunuma, “Scattering Characteristics of Crystallites in Fluoride Optical Fibers,” Appl. Opt. 26, 2683–2687 (1987).
[CrossRef]

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

T. Kanamori, H. Hattori, S. Sakaguchi, Y. Ohishi, “Study on the Nature of Extrinsic Scattering Centers in Fluoride Glass Optical Fibers,” Jpn. J. Appl. Phys. 25, L203–L205 (1986).
[CrossRef]

Sigel, G. H.

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Takahashi, S.

Terunuma, Y.

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

H. Hattori, S. Sakaguchi, T. Kanamori, Y. Terunuma, “Scattering Characteristics of Crystallites in Fluoride Optical Fibers,” Appl. Opt. 26, 2683–2687 (1987).
[CrossRef]

Tran, D. C.

G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
[CrossRef]

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

Williams, J. R.

M. W. Moore, P. W. France, S. F. Carter, J. R. Williams, “Scattering Losses in Fluoride Glass Fibre,” in Proceedings, Fifth International Symposium on Halide Glasses, Shizuoka, Japan (May–June 1988).

Appl. Opt. (3)

Br. Telecom. J. (1)

P. W. France, S. F. Carter, M. W. Moore, C. R. Day, “Progress in Fluoride Fibres for Optical Communications,” Br. Telecom. J. 5, 28–44 (1987).

Electron. Lett. (2)

D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh Scattering in Fluoride Glass Optical Fibres,” Electron. Lett. 19, 165–166 (1983).
[CrossRef]

G. Lu, K. H. Levin, M. J. Burk, D. C. Tran, “Scattering Measurements on a Low-Loss Fluorozirconate Optical Fiber,” Electron. Lett. 22, 602–603 (1986).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Sakaguchi, K. Fujiura, Y. Ohishi, Y. Terunuma, T. Kanamori, “Formation of Extrinsic Scatterers in ZrF4-Based Fluoride Optical Fibers,” J. Non-Cryst. Solids 95 & 96, 617–624 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Kanamori, H. Hattori, S. Sakaguchi, Y. Ohishi, “Study on the Nature of Extrinsic Scattering Centers in Fluoride Glass Optical Fibers,” Jpn. J. Appl. Phys. 25, L203–L205 (1986).
[CrossRef]

Other (5)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Ref. 8, Chap. 5–7.

Ref. 8, Chap. 4.

Ref. 8, Chap. 13.

M. W. Moore, P. W. France, S. F. Carter, J. R. Williams, “Scattering Losses in Fluoride Glass Fibre,” in Proceedings, Fifth International Symposium on Halide Glasses, Shizuoka, Japan (May–June 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Scattering medium: r is the beam radius, a the particle equivalent spherical radius, m1 and m2 respectively the particle and the glass refractive indices, and the scattering angle.

Fig. 2
Fig. 2

Angular dependence of light scattering using Mie theory (natural light). Angular range in the glass is limited to 55–125° (experimental conditions corrected for deviation). Glass index is 1.51 (ZBLAN). Particles are bubbles (m1 = 1) with equivalent radius: (a) 0.3 μm, (b) 1 μm, (c) 2 μm. At 90° the relative level Rsft is respectively 8, 224, 840.

Fig. 3
Fig. 3

Same as Fig. 2 for ZrF4 (m1 = 1.59) with equivalent radius: (a) 0.3 μm, (b) 1 μm, (c) 2 μm. At 90° the relative level Rsft is respectively 0.4, 8, 33.

Fig. 4
Fig. 4

Experimental setup for angular scattering measurements in fibers (for bulk samples the beam is focused in the glass).

Fig. 5
Fig. 5

Measured Rayleigh scattering on a silica fiber used for calibration (polarizations normal and parallel to scattering plane).

Fig. 6
Fig. 6

Same as Fig. 5 for a fluoride fiber.

Fig. 7
Fig. 7

Measured angular dependence of light scattered by a particle in a bulk sample (E): example B1 (very bright point). Beam diameter is ≈110 μm, Rsfe ≈ 210.

Fig. 8
Fig. 8

Same as Fig. 7: example B2, Rsfe ≈ 1.1 × 104.

Fig. 9
Fig. 9

Theoretical simulation for example B1 (Fig. 7) with a bubble, a = 2.16 μm, Rsft ≈ 280.

Fig. 10
Fig. 10

Theoretical simulation for example B2 (Fig. 8) with a bubble, a = 11 μm, Rsft ≈ 1.4 × 104.

Fig. 11
Fig. 11

Measured angular dependence of light scattered by a particle in a bulk sample (P): example B3 (weakly scattering point). Beam diameter is ≈110 μm. Rsfe ≈ 90 for the peak.

Fig. 12
Fig. 12

Same as Fig. 11: example B4. Rsfe ranges from 30 to 90 for the peaks.

Fig. 13
Fig. 13

First theoretical simulation for example B3 (Fig. 11) with ZrF4 (m1 = 1.59), a = 3.5 μm. Rsft ≈ 90.

Fig. 14
Fig. 14

Second theoretical simulation for example B3 (Fig. 11) with AlF3 (m1 = 1.38), a = 3.5 μm. Rsft ≈ 90.

Fig. 15
Fig. 15

First theoretical simulation for example B4 (Fig. 12) with m1 = 1.30, a = 2.5 μm. Rsft ≈ 85 for the peak near 65°.

Fig. 16
Fig. 16

Second theoretical simulation for example B4 (Fig. 12) with AlF3 (m1 = 1.38), a = 2.2 μm. Rsft ≈ 30 for the peak near 50°.

Fig. 17
Fig. 17

Measured angular dependence of light scattered by a particle in a fluoride fibers with a 125 μm core diameter: example F1, Rsfe ≈ 130 at 90°.

Fig. 18
Fig. 18

Measured angular dependence of light scattered by a particle in a fluoride fiber with a 50-μm core diameter: example F2, Rsfe ≈ 12 for the peak level.

Fig. 19
Fig. 19

Same as Fig. 18: example F3, Rsfe ≈ 50 at 90°.

Fig. 20
Fig. 20

Same as Fig. 18: example F4, Rsfe ≈ 60 at 90°.

Tables (3)

Tables Icon

Table I Peak Positions and Scattering Levels for a Few Particles

Tables Icon

Table II Loss per Particle In dB at 0.633 μm; Fiber Core Is 50 μm

Tables Icon

Table III Loss per Particle In dB at 2.55 μm; Fiber Core Is 50 μm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P s = P o ( π a 2 π r 2 ) Q s ,
α s = - ( 10 ln 10 ) ln { 1 - a 2 r 2 Q s } ,
α s ~ ( 10 ln 10 ) ( a 2 r 2 Q s ) .
I = [ S 1 ( θ ) ] 2 k 2 d 2 I 0 I = [ S 2 ( θ ) ] 2 k 2 d 2 I 0
V = L 0.8 α s Ω T B S a R L P ,

Metrics