Abstract

Temporal studies of depolarization loss in a thermally strained, pulsed, Nd:glass laser system are reported. The probe beam consisted of a 70-mJ–20-ns, TEM00, Nd:glass laser oscillator pulse. It was observed that, in all the cases of input pump energy density ϕ, the peak of the profile of depolarization loss is separated from the peak of population inversion by approximately 150 μs. The peak values of gain and depolarization loss showed a dependence of ϕ5/3 and ϕ2, respectively. Theoretical prediction of saturation of depolarization loss, at high input pump energy density, was found to be in agreement with the experimental observation.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), p. 245.
  2. W. Koechner, D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
    [CrossRef]
  3. M. K. Chun, J. T. Bischoff, “Thermal Transient Effects in Optically Pumped Repetitively Pulsed Lasers,” IEEE J. Quantum Electron. QE-7, 200–202 (1971).
    [CrossRef]
  4. B. K. Sinha, N. Gopi, “Study of Thermal Relaxation in a Repetitively Pumped Nd:glass Laser Rods,” IEEE J. Quantum Electron. QE-16, 433–438 (1980).
    [CrossRef]
  5. A. A. Jaecklin, M. Lietz, “Elimination of Distributing Birefringence Effects on Faraday Rotation,” Appl. Opt. 11, 617–621 (1972).
    [CrossRef] [PubMed]
  6. W. F. Krupke, E. V. George, R. A. Hass, “Advanced Laser for Fusion,” in Laser Handbook, M. K. Stitch, Ed. (North-Holland, Amsterdam, 1979), p. 666.
  7. V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
    [CrossRef]
  8. J. Soures, S. Kumpan, J. Hoose, “High Power Nd:glass Laser for Fusion Applications,” Appl. Opt. 13, 2081–2094 (1974).
    [CrossRef] [PubMed]
  9. J. Bunkenberg et al., “The Omega High-Power Phosphate-Glass System Design and Performance,” IEEE J. Quantum Electron. QE-17, 1620–1628 (1981).
    [CrossRef]
  10. J. S. Uppal, P. D. Gupta, D. D. Bhawalkar, “Study of Thermal Active Birefringence in Nd:glass Laser Rods,” J. Appl. Phys. 54, 6615–6619 (1983).
    [CrossRef]
  11. W. Koechner, “Transient Thermal Profile in Optically Pumped Laser Rods,” J. Appl. Phys. 44, 3162–3170 (1973).
    [CrossRef]
  12. G. D. Baldwin, E. P. Riedel, “Measurements of Dynamic Optical Distortion in Nd:Doped Glass Laser Rods,” J. Appl. Phys. 38, 2726–2738 (1967).
    [CrossRef]
  13. R. F. Hotz, “Thermal Transient Effects in Repetitively Pulsed Flashlamp-Pumped YAG:Nd and YAG:Nd, Lu Laser Material,” Appl. Opt. 12, 1834–1838 (1973).
    [CrossRef] [PubMed]

1983 (2)

V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
[CrossRef]

J. S. Uppal, P. D. Gupta, D. D. Bhawalkar, “Study of Thermal Active Birefringence in Nd:glass Laser Rods,” J. Appl. Phys. 54, 6615–6619 (1983).
[CrossRef]

1981 (1)

J. Bunkenberg et al., “The Omega High-Power Phosphate-Glass System Design and Performance,” IEEE J. Quantum Electron. QE-17, 1620–1628 (1981).
[CrossRef]

1980 (1)

B. K. Sinha, N. Gopi, “Study of Thermal Relaxation in a Repetitively Pumped Nd:glass Laser Rods,” IEEE J. Quantum Electron. QE-16, 433–438 (1980).
[CrossRef]

1974 (1)

1973 (2)

1972 (1)

1971 (1)

M. K. Chun, J. T. Bischoff, “Thermal Transient Effects in Optically Pumped Repetitively Pulsed Lasers,” IEEE J. Quantum Electron. QE-7, 200–202 (1971).
[CrossRef]

1970 (1)

W. Koechner, D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

1967 (1)

G. D. Baldwin, E. P. Riedel, “Measurements of Dynamic Optical Distortion in Nd:Doped Glass Laser Rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Baldwin, G. D.

G. D. Baldwin, E. P. Riedel, “Measurements of Dynamic Optical Distortion in Nd:Doped Glass Laser Rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Bhawalkar, D. D.

J. S. Uppal, P. D. Gupta, D. D. Bhawalkar, “Study of Thermal Active Birefringence in Nd:glass Laser Rods,” J. Appl. Phys. 54, 6615–6619 (1983).
[CrossRef]

Bischoff, J. T.

M. K. Chun, J. T. Bischoff, “Thermal Transient Effects in Optically Pumped Repetitively Pulsed Lasers,” IEEE J. Quantum Electron. QE-7, 200–202 (1971).
[CrossRef]

Bunkenberg, J.

J. Bunkenberg et al., “The Omega High-Power Phosphate-Glass System Design and Performance,” IEEE J. Quantum Electron. QE-17, 1620–1628 (1981).
[CrossRef]

Bychenkov, V. Y.

V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
[CrossRef]

Chun, M. K.

M. K. Chun, J. T. Bischoff, “Thermal Transient Effects in Optically Pumped Repetitively Pulsed Lasers,” IEEE J. Quantum Electron. QE-7, 200–202 (1971).
[CrossRef]

George, E. V.

W. F. Krupke, E. V. George, R. A. Hass, “Advanced Laser for Fusion,” in Laser Handbook, M. K. Stitch, Ed. (North-Holland, Amsterdam, 1979), p. 666.

Gopi, N.

B. K. Sinha, N. Gopi, “Study of Thermal Relaxation in a Repetitively Pumped Nd:glass Laser Rods,” IEEE J. Quantum Electron. QE-16, 433–438 (1980).
[CrossRef]

Gupta, P. D.

J. S. Uppal, P. D. Gupta, D. D. Bhawalkar, “Study of Thermal Active Birefringence in Nd:glass Laser Rods,” J. Appl. Phys. 54, 6615–6619 (1983).
[CrossRef]

Hass, R. A.

W. F. Krupke, E. V. George, R. A. Hass, “Advanced Laser for Fusion,” in Laser Handbook, M. K. Stitch, Ed. (North-Holland, Amsterdam, 1979), p. 666.

Hoose, J.

Hotz, R. F.

Jaecklin, A. A.

Koechner, W.

W. Koechner, “Transient Thermal Profile in Optically Pumped Laser Rods,” J. Appl. Phys. 44, 3162–3170 (1973).
[CrossRef]

W. Koechner, D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), p. 245.

Krupke, W. F.

W. F. Krupke, E. V. George, R. A. Hass, “Advanced Laser for Fusion,” in Laser Handbook, M. K. Stitch, Ed. (North-Holland, Amsterdam, 1979), p. 666.

Kumpan, S.

Lietz, M.

Rice, D. K.

W. Koechner, D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

Riedel, E. P.

G. D. Baldwin, E. P. Riedel, “Measurements of Dynamic Optical Distortion in Nd:Doped Glass Laser Rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Silin, V. P.

V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
[CrossRef]

Sinha, B. K.

B. K. Sinha, N. Gopi, “Study of Thermal Relaxation in a Repetitively Pumped Nd:glass Laser Rods,” IEEE J. Quantum Electron. QE-16, 433–438 (1980).
[CrossRef]

Soures, J.

Tikhonchuk, V. T.

V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
[CrossRef]

Uppal, J. S.

J. S. Uppal, P. D. Gupta, D. D. Bhawalkar, “Study of Thermal Active Birefringence in Nd:glass Laser Rods,” J. Appl. Phys. 54, 6615–6619 (1983).
[CrossRef]

Zozulja, A. A.

V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
[CrossRef]

Appl. Opt. (3)

Beitr. Plasma Phys. (1)

V. Y. Bychenkov, A. A. Zozulja, V. P. Silin, V. T. Tikhonchuk, “Half-Integer Harmonic Generation in Laser-Produced Plasma,” Beitr. Plasma Phys. 23, 331–340 (1983).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. Bunkenberg et al., “The Omega High-Power Phosphate-Glass System Design and Performance,” IEEE J. Quantum Electron. QE-17, 1620–1628 (1981).
[CrossRef]

W. Koechner, D. K. Rice, “Effect of Birefringence on the Performance of Linearly Polarized YAG:Nd Lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970).
[CrossRef]

M. K. Chun, J. T. Bischoff, “Thermal Transient Effects in Optically Pumped Repetitively Pulsed Lasers,” IEEE J. Quantum Electron. QE-7, 200–202 (1971).
[CrossRef]

B. K. Sinha, N. Gopi, “Study of Thermal Relaxation in a Repetitively Pumped Nd:glass Laser Rods,” IEEE J. Quantum Electron. QE-16, 433–438 (1980).
[CrossRef]

J. Appl. Phys. (3)

J. S. Uppal, P. D. Gupta, D. D. Bhawalkar, “Study of Thermal Active Birefringence in Nd:glass Laser Rods,” J. Appl. Phys. 54, 6615–6619 (1983).
[CrossRef]

W. Koechner, “Transient Thermal Profile in Optically Pumped Laser Rods,” J. Appl. Phys. 44, 3162–3170 (1973).
[CrossRef]

G. D. Baldwin, E. P. Riedel, “Measurements of Dynamic Optical Distortion in Nd:Doped Glass Laser Rods,” J. Appl. Phys. 38, 2726–2738 (1967).
[CrossRef]

Other (2)

W. F. Krupke, E. V. George, R. A. Hass, “Advanced Laser for Fusion,” in Laser Handbook, M. K. Stitch, Ed. (North-Holland, Amsterdam, 1979), p. 666.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, New York, 1976), p. 245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

The cross section of the pumping cavity configuration.

Fig. 3
Fig. 3

The flash-lamp intensity profile.

Fig. 4
Fig. 4

Depolarization loss and gain as a function of probe-pulse delay. The curves A, B, and C are obtained at values 99.87, 76.97 and 56.53 J/cc, respectively, of input pump energy density. The coolant is ethylene glycol plus distilled water (1:1).

Fig. 5
Fig. 5

Depolarization loss and gain as a function of probe-pulse delay. The sets A1 and A2 are for 15 mm and 10 mm central aperture of the same rod. The coolant is ethylene glycol plus distilled water (1:1).

Fig. 6
Fig. 6

Depolarization loss and gain as a function of probe-pulse delay for pump input energy density of 99.87 J/cc. The coolant is distilled water.

Fig. 7
Fig. 7

Depolarization loss as a function of pump input energy density for three values, 300, 400, and 500 μs of probe-pulse delay, represented by the symbols A, B, and C, respectively.

Fig. 8
Fig. 8

Total small signal gain as a function of pump input energy density for three values 300, 400, and 500 μs of the probe-pulse delay represented by the symbols A, B, and C, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ = 6.19 × 10 - 2 P in ( r 2 r 0 2 ) ,
δ ( t ) = 6.19 × 10 - 2 P in ( r 2 / r 0 2 ) β ( t ) .
τ ( t ) = 1 4 [ 1 - sin { 6.19 × 10 - 2 P in β ( t ) } { 6.19 × 10 - 2 P in β ( t ) } ] .
τ ( t ) = 1 4 { [ W 2 2 r 0 2 ( 1 - exp ( - 2 r 0 2 / W 2 ) ] - 1 k [ exp ( - 2 r 0 2 / W 2 ) ( b 2 + 4 ) ( b cos 2 k + 2 sin 2 k ) - b b 2 + 4 ] } ,
τ s = 1 4 { W 2 2 r 0 2 [ 1 - exp ( - 2 r 0 2 / W 2 ) ] } .
τ s = ¼ × 3.12 % .

Metrics