Abstract

A continuously tunable picosecond laser system has been developed that operates in two modes: cw (100 MHz) and pulsed (10 Hz). In either mode the tuning range is approximately the same: from 0.6–4 μm. The pulse duration can also be selected: either short (typically 5 ps) or long (typically 50 ps) pulses are available. The average output power is in the milliwatt range for both repetition rates. In addition, both modes of operation are simultaneously available, and they are mutually synchronized. The system is based on a mode locked high power Nd:YLF laser which synchronously pumps a dye laser and seeds a Nd:YLF regenerative amplifier. Frequency mixing and parametric generation/amplification in KTiOPO4 are used to obtain the large tunability.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
    [CrossRef] [PubMed]
  2. L. F. Mollenauer, “Color Center Lasers,” in Laser Handbook, Vol. 4, M. L. Stitch, M. Bass, Eds. (North-Holland, Amsterdam, 1985), pp. 143–228.
  3. M. D. Dawson, T. F. Boggess, A. L. Smirl, “Picosecond and Femtosecond Pulse Generation near 1000 nm from a Frequency-Doubled Nd:YAG-Pumped cw Dye Laser,” Opt. Lett. 12, 590–592 (1987).
    [CrossRef] [PubMed]
  4. A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable Picosecond Pulses Around 1.3 μm Generated by a Synchronously Pumped Infrared Dye Laser,” Opt. Lett. 8, 205–207 (1983).
    [CrossRef] [PubMed]
  5. W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
    [CrossRef]
  6. K. Kato, “Ar-Ion-Laser-Pumped Infrared Dye Laser at 875–1084 nm,” Opt. Lett. 9, 544–545 (1984).
    [CrossRef] [PubMed]
  7. I. Ledoux, J. Badan, J. Zyss, “Generation of High-Peak Power Tunable Infrared Femtosecond Pulses in an Organic Crystal: Application to Time Resolution of Weak Infrared Signals,” J. Opt. Soc. Am. B 4, 987–997 (1987).
    [CrossRef]
  8. See e.g., Y. R. Shen, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1977); see also, A. Lauberau, “Optical Nonlinearities with Ultrashort Pulses,” in Ultrashort Laser Pulses and Applications, W. Kaiser, Ed. (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  9. D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987).
    [CrossRef]
  10. D. Cotter, K. I. White, “Picosecond Pulse Generation and Detection in the Wavelength Range 1200–1600 nm,” Opt. Commun. 49, 205–209 (1984).
    [CrossRef]
  11. F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976).
    [CrossRef]
  12. J. D. Bierlein, H. Vanherzeele, “Potassium Titanyl Phosphate: Properties and New Applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
    [CrossRef]
  13. H. Vanherzeele, “Recent Advances in the Generation of Picosecond Tunable Infrared Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 1104, 44–60 (1989).
  14. G. A. Massey, T. M. Loehr, L. J. Willis, J. C. Johnson, “Raman and Electrooptic Properties of Potassium Titanate Phosphate,” Appl. Opt. 19, 4136–4137 (1980).
    [CrossRef] [PubMed]
  15. R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989).
    [CrossRef]
  16. M. D. Dawson, W. A. Schroeder, D. P. Norwood, A. L. Smirl, “Wavelength-Tunable Synchronous Amplification of Picosecond Dye-Laser Pulses Near 1 μm,” Opt. Lett. 14, 364–366 (1989).
    [CrossRef] [PubMed]
  17. A. J. Taylor, J. P. Roberts, T. R. Gosnell, C. S. Lester, “Synchronously Pumped Subpicosecond Dye Oscillator-Amplifier System,” Opt. Lett. 14, 444–446 (1989).
    [CrossRef] [PubMed]
  18. H. Vanherzeele, “Optimization of a cw Mode Locked Frequency-Doubled Nd:LiYF4 Laser,” Appl. Opt. 27, 3608–3615 (1988).
    [CrossRef] [PubMed]
  19. H. Vanherzeele, “Continuous-Wave Dual Rod Nd:YLF Laser with Dynamic Lensing Compensation,” Appl. Opt. 28, 4042–4044 (1989).
    [CrossRef] [PubMed]
  20. H. Vanherzeele, “Thermal Lensing Measurement and Compensation in a Continuous Wave Mode Locked Nd:YLF Laser,” Opt. Lett. 13, 369–371 (1988).
    [CrossRef] [PubMed]
  21. H. Vanherzeele, “Characterization and Active Stabilization of a Harmonically Modulated Continuous-Wave Nd:LiYF4 Laser,” Rev. Sci. Instrum. 60, 592–597 (1989).
    [CrossRef]
  22. M. G. Roelofs, “Identification of Ti3+ in Potassium Titanyl Phosphate and its Possible Role in Laser Damage,” J. Appl. Phys. 65, 4976–4982 (1989).
    [CrossRef]
  23. H. Vanherzeele, “Generation of Tunable Infrared Picosecond Pulses at 100 MHz by Difference Frequency Mixing in KTiOPO4,” Opt. Lett. 14, 728–730 (1989).
    [CrossRef] [PubMed]
  24. H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, “Index of Refraction Measurements and Parametric Generation in Hydrothermally Grown KTiOPO4,” Appl. Opt. 27, 3314–3316 (1988).
    [CrossRef] [PubMed]
  25. C. A. Moore, L. S. Goldberg, “Tunable UV and IR Picosecond Pulse Generation by Nonlinear Mixing Using a Synchronous Mode Locked Dye Laser,” Opt. Commun. 16, 21–25 (1976).
    [CrossRef]
  26. A. G. Yodh, H. W. K. Tom, G. D. Aumiller, “Generation of Tunable Mid-IR Picosecond Pulses at 76 MHz,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper ThX5.
  27. K. Kurokawa, M. Nakazawa, “Femtosecond 1.4–1.6μm Infrared Pulse Generation at High Repetition Rate by Difference Frequency Generation,” Appl. Phys. Lett. 55, 7–9 (1989).
    [CrossRef]
  28. J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
    [CrossRef]
  29. A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113–119 (1980).
    [CrossRef]
  30. A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
    [CrossRef]
  31. J. S. Coe, P. Maine, P. Bado, “Regenerative Amplification of Picosecond Pulses in Nd:YLF: Gain Narrowing and Gain Saturation,” J. Opt. Soc. Am. B 5, 2560–2563 (1988).
    [CrossRef]
  32. J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.
  33. R. Popovitz-Biro et al., “A New Class of Stable Head-to-Tail (Z-type) Langmuir-Blodgett Films—A Second Harmonic Generation Study,” J. Am. Chem. Soc. 110, 2672–2674 (1988).
    [CrossRef]
  34. G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.
  35. I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
    [CrossRef]
  36. G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.
  37. H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
    [CrossRef]
  38. R. Popovitz-Biro et al., “A New Series of Amphiphilic Molecules Forming Stable Z-Type (polar) Langmuir-Blodgett Films,” J. Am. Chem. Soc. 112, 2498–2506 (1990).
    [CrossRef]
  39. B. K. Nayar, H. Vanherzeele, “Dual-Wavelength Ultrafast Complete Optical Switching in a Polarization-Maintaining Fiber,” IEEE Photgr. Techn. Lett. (submitted).
  40. H. Vanherzeele, “Optical Parametric Conversion of Picosecond Pulses in KTiOPO4,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper TuN3.

1990 (1)

R. Popovitz-Biro et al., “A New Series of Amphiphilic Molecules Forming Stable Z-Type (polar) Langmuir-Blodgett Films,” J. Am. Chem. Soc. 112, 2498–2506 (1990).
[CrossRef]

1989 (14)

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

K. Kurokawa, M. Nakazawa, “Femtosecond 1.4–1.6μm Infrared Pulse Generation at High Repetition Rate by Difference Frequency Generation,” Appl. Phys. Lett. 55, 7–9 (1989).
[CrossRef]

J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

H. Vanherzeele, “Recent Advances in the Generation of Picosecond Tunable Infrared Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 1104, 44–60 (1989).

R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

H. Vanherzeele, “Characterization and Active Stabilization of a Harmonically Modulated Continuous-Wave Nd:LiYF4 Laser,” Rev. Sci. Instrum. 60, 592–597 (1989).
[CrossRef]

M. G. Roelofs, “Identification of Ti3+ in Potassium Titanyl Phosphate and its Possible Role in Laser Damage,” J. Appl. Phys. 65, 4976–4982 (1989).
[CrossRef]

J. D. Bierlein, H. Vanherzeele, “Potassium Titanyl Phosphate: Properties and New Applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

M. D. Dawson, W. A. Schroeder, D. P. Norwood, A. L. Smirl, “Wavelength-Tunable Synchronous Amplification of Picosecond Dye-Laser Pulses Near 1 μm,” Opt. Lett. 14, 364–366 (1989).
[CrossRef] [PubMed]

A. J. Taylor, J. P. Roberts, T. R. Gosnell, C. S. Lester, “Synchronously Pumped Subpicosecond Dye Oscillator-Amplifier System,” Opt. Lett. 14, 444–446 (1989).
[CrossRef] [PubMed]

H. Vanherzeele, “Generation of Tunable Infrared Picosecond Pulses at 100 MHz by Difference Frequency Mixing in KTiOPO4,” Opt. Lett. 14, 728–730 (1989).
[CrossRef] [PubMed]

H. Vanherzeele, “Continuous-Wave Dual Rod Nd:YLF Laser with Dynamic Lensing Compensation,” Appl. Opt. 28, 4042–4044 (1989).
[CrossRef] [PubMed]

1988 (5)

1987 (3)

1984 (2)

D. Cotter, K. I. White, “Picosecond Pulse Generation and Detection in the Wavelength Range 1200–1600 nm,” Opt. Commun. 49, 205–209 (1984).
[CrossRef]

K. Kato, “Ar-Ion-Laser-Pumped Infrared Dye Laser at 875–1084 nm,” Opt. Lett. 9, 544–545 (1984).
[CrossRef] [PubMed]

1983 (1)

1981 (1)

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

1980 (2)

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113–119 (1980).
[CrossRef]

G. A. Massey, T. M. Loehr, L. J. Willis, J. C. Johnson, “Raman and Electrooptic Properties of Potassium Titanate Phosphate,” Appl. Opt. 19, 4136–4137 (1980).
[CrossRef] [PubMed]

1979 (1)

A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

1976 (2)

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

C. A. Moore, L. S. Goldberg, “Tunable UV and IR Picosecond Pulse Generation by Nonlinear Mixing Using a Synchronous Mode Locked Dye Laser,” Opt. Commun. 16, 21–25 (1976).
[CrossRef]

Adair, R.

R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Anthon, D. W.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987).
[CrossRef]

Aubert, R.

J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.

Aubuchon, D.

J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.

Aumiller, G. D.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, “Generation of Tunable Mid-IR Picosecond Pulses at 76 MHz,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper ThX5.

Badan, J.

Bado, P.

Baker, G. L.

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Ballman, A. A.

J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

Benson, S.

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Bierlein, J. D.

J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

J. D. Bierlein, H. Vanherzeele, “Potassium Titanyl Phosphate: Properties and New Applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, “Index of Refraction Measurements and Parametric Generation in Hydrothermally Grown KTiOPO4,” Appl. Opt. 27, 3314–3316 (1988).
[CrossRef] [PubMed]

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Boggess, T. F.

Chase, L. L.

R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Cheng, L.-T.

G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.

Clark, J. H.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987).
[CrossRef]

Coe, J. S.

Cotter, D.

D. Cotter, K. I. White, “Picosecond Pulse Generation and Detection in the Wavelength Range 1200–1600 nm,” Opt. Commun. 49, 205–209 (1984).
[CrossRef]

Dawson, M. D.

Drexhage, K. H.

A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable Picosecond Pulses Around 1.3 μm Generated by a Synchronously Pumped Infrared Dye Laser,” Opt. Lett. 8, 205–207 (1983).
[CrossRef] [PubMed]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Etemad, S.

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Ettelbrick, R. N.

J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.

Fann, W.-S.

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Fendt, A.

A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Goldberg, L. S.

C. A. Moore, L. S. Goldberg, “Tunable UV and IR Picosecond Pulse Generation by Nonlinear Mixing Using a Synchronous Mode Locked Dye Laser,” Opt. Commun. 16, 21–25 (1976).
[CrossRef]

Gosnell, T. R.

Guthals, D. M.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987).
[CrossRef]

Heritier, J. M.

J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.

Hsiung, H.

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.

G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.

Johnson, J. C.

Kaiser, W.

A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable Picosecond Pulses Around 1.3 μm Generated by a Synchronously Pumped Infrared Dye Laser,” Opt. Lett. 8, 205–207 (1983).
[CrossRef] [PubMed]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113–119 (1980).
[CrossRef]

A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Kajzar, F.

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Kato, K.

Kopainsky, B.

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Kranitzky, W.

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Kurokawa, K.

K. Kurokawa, M. Nakazawa, “Femtosecond 1.4–1.6μm Infrared Pulse Generation at High Repetition Rate by Difference Frequency Generation,” Appl. Phys. Lett. 55, 7–9 (1989).
[CrossRef]

Lahav, M.

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

Lauberau, A.

A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Ledoux, I.

Leiserowitz, L.

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

Lester, C. S.

Loehr, T. M.

Madey, J. M. J.

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Maine, P.

Massey, G. A.

Meredith, G. R.

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.

G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.

Mollenauer, L. F.

L. F. Mollenauer, “Color Center Lasers,” in Laser Handbook, Vol. 4, M. L. Stitch, M. Bass, Eds. (North-Holland, Amsterdam, 1985), pp. 143–228.

Moore, C. A.

C. A. Moore, L. S. Goldberg, “Tunable UV and IR Picosecond Pulse Generation by Nonlinear Mixing Using a Synchronous Mode Locked Dye Laser,” Opt. Commun. 16, 21–25 (1976).
[CrossRef]

Nakazawa, M.

K. Kurokawa, M. Nakazawa, “Femtosecond 1.4–1.6μm Infrared Pulse Generation at High Repetition Rate by Difference Frequency Generation,” Appl. Phys. Lett. 55, 7–9 (1989).
[CrossRef]

Nathel, H.

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987).
[CrossRef]

Nayar, B. K.

B. K. Nayar, H. Vanherzeele, “Dual-Wavelength Ultrafast Complete Optical Switching in a Polarization-Maintaining Fiber,” IEEE Photgr. Techn. Lett. (submitted).

Norwood, D. P.

Payne, S. A.

R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Popovitz-Biro, R.

R. Popovitz-Biro et al., “A New Series of Amphiphilic Molecules Forming Stable Z-Type (polar) Langmuir-Blodgett Films,” J. Am. Chem. Soc. 112, 2498–2506 (1990).
[CrossRef]

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

R. Popovitz-Biro et al., “A New Class of Stable Head-to-Tail (Z-type) Langmuir-Blodgett Films—A Second Harmonic Generation Study,” J. Am. Chem. Soc. 110, 2672–2674 (1988).
[CrossRef]

Reynolds, G. A.

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

Roberts, J. P.

Roelofs, M. G.

M. G. Roelofs, “Identification of Ti3+ in Potassium Titanyl Phosphate and its Possible Role in Laser Damage,” J. Appl. Phys. 65, 4976–4982 (1989).
[CrossRef]

Schroeder, W. A.

Seilmeier, A.

A. Seilmeier, W. Kaiser, B. Sens, K. H. Drexhage, “Tunable Picosecond Pulses Around 1.3 μm Generated by a Synchronously Pumped Infrared Dye Laser,” Opt. Lett. 8, 205–207 (1983).
[CrossRef] [PubMed]

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113–119 (1980).
[CrossRef]

Sens, B.

Shavit, E.

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

Shen, Y. R.

See e.g., Y. R. Shen, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1977); see also, A. Lauberau, “Optical Nonlinearities with Ultrashort Pulses,” in Ultrashort Laser Pulses and Applications, W. Kaiser, Ed. (Springer-Verlag, Berlin, 1988).
[CrossRef]

Smirl, A. L.

Stevenson, S. H.

G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.

Taylor, A. J.

Tom, H. W. K.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, “Generation of Tunable Mid-IR Picosecond Pulses at 76 MHz,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper ThX5.

Vanherzeele, H.

J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

H. Vanherzeele, “Generation of Tunable Infrared Picosecond Pulses at 100 MHz by Difference Frequency Mixing in KTiOPO4,” Opt. Lett. 14, 728–730 (1989).
[CrossRef] [PubMed]

H. Vanherzeele, “Continuous-Wave Dual Rod Nd:YLF Laser with Dynamic Lensing Compensation,” Appl. Opt. 28, 4042–4044 (1989).
[CrossRef] [PubMed]

J. D. Bierlein, H. Vanherzeele, “Potassium Titanyl Phosphate: Properties and New Applications,” J. Opt. Soc. Am. B 6, 622–633 (1989).
[CrossRef]

H. Vanherzeele, “Recent Advances in the Generation of Picosecond Tunable Infrared Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 1104, 44–60 (1989).

H. Vanherzeele, “Characterization and Active Stabilization of a Harmonically Modulated Continuous-Wave Nd:LiYF4 Laser,” Rev. Sci. Instrum. 60, 592–597 (1989).
[CrossRef]

H. Vanherzeele, “Optimization of a cw Mode Locked Frequency-Doubled Nd:LiYF4 Laser,” Appl. Opt. 27, 3608–3615 (1988).
[CrossRef] [PubMed]

H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, “Index of Refraction Measurements and Parametric Generation in Hydrothermally Grown KTiOPO4,” Appl. Opt. 27, 3314–3316 (1988).
[CrossRef] [PubMed]

H. Vanherzeele, “Thermal Lensing Measurement and Compensation in a Continuous Wave Mode Locked Nd:YLF Laser,” Opt. Lett. 13, 369–371 (1988).
[CrossRef] [PubMed]

G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.

B. K. Nayar, H. Vanherzeele, “Dual-Wavelength Ultrafast Complete Optical Switching in a Polarization-Maintaining Fiber,” IEEE Photgr. Techn. Lett. (submitted).

H. Vanherzeele, “Optical Parametric Conversion of Picosecond Pulses in KTiOPO4,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper TuN3.

G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.

Weissbuch, I.

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

Weston, J.

J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.

White, K. I.

D. Cotter, K. I. White, “Picosecond Pulse Generation and Detection in the Wavelength Range 1200–1600 nm,” Opt. Commun. 49, 205–209 (1984).
[CrossRef]

Willis, L. J.

Yodh, A. G.

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, “Generation of Tunable Mid-IR Picosecond Pulses at 76 MHz,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper ThX5.

Zumsteg, F. C.

H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, “Index of Refraction Measurements and Parametric Generation in Hydrothermally Grown KTiOPO4,” Appl. Opt. 27, 3314–3316 (1988).
[CrossRef] [PubMed]

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.

G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.

Zyss, J.

Appl. Opt. (4)

Appl. Phys. (1)

A. Seilmeier, W. Kaiser, “Generation of Tunable Picosecond Light Pulses Covering the Frequency Range Between 2,700 and 32,000 cm−1,” Appl. Phys. 23, 113–119 (1980).
[CrossRef]

Appl. Phys. Lett. (2)

K. Kurokawa, M. Nakazawa, “Femtosecond 1.4–1.6μm Infrared Pulse Generation at High Repetition Rate by Difference Frequency Generation,” Appl. Phys. Lett. 55, 7–9 (1989).
[CrossRef]

J. D. Bierlein, H. Vanherzeele, A. A. Ballman, “Linear and Nonlinear Optical Properties of Flux-Grown KTiOAsO4,” Appl. Phys. Lett. 54, 783–785 (1989).
[CrossRef]

Chem. Mater. (1)

I. Weissbuch, M. Lahav, L. Leiserowitz, G. R. Meredith, H. Vanherzeele, “Centrosymmetric Crystals as Host Matrices for Second Order Optical Nonlinear Effects,” Chem. Mater. 1, 114–118 (1989).
[CrossRef]

Chem. Phys. Lett. (1)

H. Hsiung, G. R. Meredith, H. Vanherzeele, R. Popovitz-Biro, E. Shavit, M. Lahav, “Ordering of Two Nitroaniline-Terminated Amphiphiles at the Air–Water Interface Studied by Optical Second Harmonic Generation and Ellipsometry,” Chem. Phys. Lett. 164, 539–544 (1989).
[CrossRef]

J. Am. Chem. Soc. (2)

R. Popovitz-Biro et al., “A New Series of Amphiphilic Molecules Forming Stable Z-Type (polar) Langmuir-Blodgett Films,” J. Am. Chem. Soc. 112, 2498–2506 (1990).
[CrossRef]

R. Popovitz-Biro et al., “A New Class of Stable Head-to-Tail (Z-type) Langmuir-Blodgett Films—A Second Harmonic Generation Study,” J. Am. Chem. Soc. 110, 2672–2674 (1988).
[CrossRef]

J. Appl. Phys. (2)

M. G. Roelofs, “Identification of Ti3+ in Potassium Titanyl Phosphate and its Possible Role in Laser Damage,” J. Appl. Phys. 65, 4976–4982 (1989).
[CrossRef]

F. C. Zumsteg, J. D. Bierlein, T. E. Gier, “KxRb1−xTiOPO4: A New Nonlinear Optical Material,” J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (4)

D. Cotter, K. I. White, “Picosecond Pulse Generation and Detection in the Wavelength Range 1200–1600 nm,” Opt. Commun. 49, 205–209 (1984).
[CrossRef]

W. Kranitzky, B. Kopainsky, W. Kaiser, K. H. Drexhage, G. A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24 μm with Picosecond Excitation,” Opt. Commun. 36, 149–152 (1981).
[CrossRef]

C. A. Moore, L. S. Goldberg, “Tunable UV and IR Picosecond Pulse Generation by Nonlinear Mixing Using a Synchronous Mode Locked Dye Laser,” Opt. Commun. 16, 21–25 (1976).
[CrossRef]

A. Fendt, W. Kranitzky, A. Lauberau, W. Kaiser, “Efficient Generation of Tunable Subpicosecond Pulses in the Infrared,” Opt. Commun. 28, 142–146 (1979).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. B (1)

R. Adair, L. L. Chase, S. A. Payne, “Nonlinear Refractive Index of Optical Crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

W.-S. Fann, S. Benson, J. M. J. Madey, S. Etemad, G. L. Baker, F. Kajzar, “Spectrum of χ(3)(−3ω;ω,ω,ω) in Polyacetylene: An Application of the Free-Electron Laser in Nonlinear Optical Spectroscopy,” Phys. Rev. Lett. 62, 1492–1495 (1989).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

H. Vanherzeele, “Recent Advances in the Generation of Picosecond Tunable Infrared Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 1104, 44–60 (1989).

Rev. Sci. Instrum. (2)

D. W. Anthon, H. Nathel, D. M. Guthals, J. H. Clark, “Scanning Picosecond Optical Parametric Source Using Potassium Dihydrogen Phosphate in the Visible and Near Infrared,” Rev. Sci. Instrum. 58, 2054–2059 (1987).
[CrossRef]

H. Vanherzeele, “Characterization and Active Stabilization of a Harmonically Modulated Continuous-Wave Nd:LiYF4 Laser,” Rev. Sci. Instrum. 60, 592–597 (1989).
[CrossRef]

Other (8)

A. G. Yodh, H. W. K. Tom, G. D. Aumiller, “Generation of Tunable Mid-IR Picosecond Pulses at 76 MHz,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), paper ThX5.

J. Weston, J. M. Heritier, R. N. Ettelbrick, D. Aubuchon, R. Aubert, “High Energy Subpicosecond Pulse Generation at 1 kHz,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper MN3.

L. F. Mollenauer, “Color Center Lasers,” in Laser Handbook, Vol. 4, M. L. Stitch, M. Bass, Eds. (North-Holland, Amsterdam, 1985), pp. 143–228.

See e.g., Y. R. Shen, Nonlinear Infrared Generation (Springer-Verlag, Berlin, 1977); see also, A. Lauberau, “Optical Nonlinearities with Ultrashort Pulses,” in Ultrashort Laser Pulses and Applications, W. Kaiser, Ed. (Springer-Verlag, Berlin, 1988).
[CrossRef]

G. R. Meredith, H. Hsiung, S. H. Stevenson, H. Vanherzeele, F. C. Zumsteg, “Development, Comparison and Limitations of Nonlinear Optical Characterization Methods,” in Organic Materials for Nonlinear Optics, R. A. Hann, D. Bloor, Eds. (Royal Society of Chemistry, London, U.K., 1989), pp. 97–111.

G. R. Meredith, L.-T. Cheng, H. Hsiung, H. Vanherzeele, F. C. Zumsteg, “Characterization of Organic Nonlinear Materials,” in Organic Materials for Nonlinear and Electro-Optics, M. H. Lyon, Ed. (IOP Publishing, Bristol, 1989), pp. 139–150.

B. K. Nayar, H. Vanherzeele, “Dual-Wavelength Ultrafast Complete Optical Switching in a Polarization-Maintaining Fiber,” IEEE Photgr. Techn. Lett. (submitted).

H. Vanherzeele, “Optical Parametric Conversion of Picosecond Pulses in KTiOPO4,” in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1988), paper TuN3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Diagrammatic layout of tunable laser system: OPG, optical parametric generator; OPA, optical parametric amplifier.

Fig. 2
Fig. 2

Average output power vs wavelength of the synchronously pumped dye laser for 1 W average pump power at 526 nm. Five dye solutions are used: (a) rhodamine 6G (560–635 nm); (b) a 2:1 mixture of rhodamine 101 and rhodamine 6G (625–690 nm); (c) a 2:1 mixture of pyridine 1 and 2 (655–785 nm), (d) styryl 9 (780–905 nm) and, (e) styryl 13 (875–1005 nm).

Fig. 3
Fig. 3

Setup for frequency difference mixing: HWP, half-wave plate; AC, real time autocorrelator; BS1, 90% reflecting beam splitter; BC1, dichroic beamsplitter for reflection of the 1053 nm beam and transmission of the dye laser beam.

Fig. 4
Fig. 4

KTP type II phase matching curves for collinear difference frequency mixing in the xz plane (ϕ = 0): (A), dye(o)–YLF(e); (B), dye(o)–YLF(o).

Fig. 5
Fig. 5

Group velocity mismatch between the dye laser pulse and the IR pulse as a function of IR wavelength for both phase matching schemes (A) and (B) shown in Fig. 4.

Fig. 6
Fig. 6

Autocorrelation trace for a 610-nm dye laser pulse (solid line) and crosscorrelation data of the corresponding IR pulse at 1.45 μm with the dye laser pulse (dots). Autocorrelation width is 3.3 ps, corresponding to a pulse width of 2.2 ps.

Fig. 7
Fig. 7

Average output power vs IR wavelength of the mixer output for both phase matching schemes (A) and (B) shown in Fig. 4. The average input power from the Nd:YLF laser and the dye laser are respectively set at 5 W and 200 mW.

Fig. 8
Fig. 8

Angle tuning curves for a KTP parametric generator/amplifier. For (a) the pump wavelength is 1.053 μm for propagation in the xz plane, while for (b), (c) and (d) the pump is at 526 nm and the propagation direction is respectively in the xy plane (θ = 90), the yz plane (ϕ = 90), and the xz plane (ϕ = 0). The dots represent the experimental data.

Fig. 9
Fig. 9

Setup for parametric amplification: BS2, 50% beamsplitter (for either 1053 nm or 526 nm); BC2, dichroic beamsplitter for reflection of the pump beam and transmission of both signal and idler beams. The other elements have been identified in Fig. 3.

Fig. 10
Fig. 10

Single-pass amplification at 825 nm in a 20-mm long KTP crystal, pumped at 526 nm as a function of pump irradiance. The power gain G at the signal wavelength is measured with the idler filtered out. The dots represent the experimental data.

Fig. 11
Fig. 11

Temporal profile of seed pulse (at 825 nm) and amplified pulse. Left: autocorrelation trace for the seed pulse; right, streak camera readout for the amplified pulse.

Fig. 12
Fig. 12

Setup for parametric generation and subsequent amplification. The notations are the same as in Fig. 9. Note that an overlay of Figs. 3, 9, and 12 gives a complete layout of the apparatus.

Fig. 13
Fig. 13

Output energy as a function of wavelength for the parametric source shown in Fig. 12. Pump wavelength is 526 nm and pump energy is 12 mJ.

Fig. 14
Fig. 14

Output energy as a function of wavelength for the parametric source shown in Fig. 12. Pump wavelength is 1053 nm and pump energy is 28 mJ.

Fig. 15
Fig. 15

Streak camera readout for a 526 nm pump pulse (left) and a 825-nm signal pulse (right). A different streak speed has been used in both measurements.

Tables (1)

Tables Icon

Table I Typical Performance of the Tunable Laser Source

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 3 = 16 π d eff 2 2 P 1 P 2 0 c λ 3 2 n 1 n 2 n 3 ( w 1 2 + w 2 2 ) ,
Δ τ [ ( k / ω ) 3 - ( k / ω ) 2 ] .
G = cosh 2 ( Γ I p )
Γ 2 = 8 π 2 d eff 2 0 c λ s λ i n s n i n p .
G = ( 1 / 4 ) exp ( 2 Γ I p ) .
G = ( 1 / 4 ) exp [ 4 Γ ( β I p + 1 - 1 ) β I p ]

Metrics