Abstract

Brillouin frequency shift in two kinds of jacketed optical single-mode silica fiber, with an ultraviolet curable resin coat and a nylon coat, has been measured at temperatures ranging from −30 to +60°C. It has been found that there are two reasons for the Brillouin frequency shift change in jacketed optical fibers against temperature change. One is the Brillouin frequency shift change for bare fibers. The other is the thermal stress due to the differences in thermal expansion coefficients in bare fiber and its coating material.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, “Observation of Stimulated Brillouin Scattering in Low-Loss Silica Fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
    [CrossRef]
  2. R. G. Waarts, R. P. Braun, “Crosstalk Due to Stimulated Brillouin Scattering in Monomode Fibre,” Electron. Lett. 21, 1114–1115 (1985).
    [CrossRef]
  3. D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
    [CrossRef]
  4. A. R. Chraplyvy, R. W. Tkach, “Narrowband Tunable Optical Filter for Channel Selection in Densely Packed WDM Systems,” Electron. Lett. 22, 1084–1085 (1986).
    [CrossRef]
  5. N. A. Olsson, J. P. van der Ziel, “Cancellation of Fiber Loss by Semiconductor Laser Pumped Brillouin Amplification at 1.5 μm,” Appl. Phys. Lett. 48, 1329–1330 (1986).
    [CrossRef]
  6. T. Horiguchi, M. Tateda, “Optical-Fiber-Attenuation Investigation Using Stimulated Brillouin Scattering Between a Pulse and a Continuous Wave,” Opt. Lett. 14, 408–410 (1989).
    [CrossRef] [PubMed]
  7. T. Horiguchi, T. Kurashima, M. Tateda, “Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers,” IEEE Photon. Tech. Lett. PTL-1, 107–108 (1989).
    [CrossRef]
  8. N. Shibata, Y. Azuma, T. Horiguchi, M. Tateda, “Identification of Longitudinal Acoustic Modes Guided in the Core Region of a Single-Mode Optical Fiber by Brillouin Gain Spectra Measurements,” Opt. Lett. 13, 595–597 (1988).
    [CrossRef] [PubMed]
  9. M. Tateda, S. Tanaka, Y. Sugawara, “Thermal Characteristics of Phase Shift in Jacketed Optical Fibers,” Appl. Opt. 19, 770–773 (1980).
    [CrossRef] [PubMed]
  10. A. H. Hartog, A. J. Conduit, D. N. Payne, “Variation of Pulse Delay with Stress and Temperature in Jacketed and Unjacketed Optical Fibres,” Opt. Quantum Electron. 11, 265–273 (1979).
    [CrossRef]
  11. A. S. Pine, “Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz,” Phys. Rev. 185, 1187–1193 (1969).
    [CrossRef]
  12. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

1989 (2)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers,” IEEE Photon. Tech. Lett. PTL-1, 107–108 (1989).
[CrossRef]

T. Horiguchi, M. Tateda, “Optical-Fiber-Attenuation Investigation Using Stimulated Brillouin Scattering Between a Pulse and a Continuous Wave,” Opt. Lett. 14, 408–410 (1989).
[CrossRef] [PubMed]

1988 (1)

1986 (3)

D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, “Narrowband Tunable Optical Filter for Channel Selection in Densely Packed WDM Systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

N. A. Olsson, J. P. van der Ziel, “Cancellation of Fiber Loss by Semiconductor Laser Pumped Brillouin Amplification at 1.5 μm,” Appl. Phys. Lett. 48, 1329–1330 (1986).
[CrossRef]

1985 (1)

R. G. Waarts, R. P. Braun, “Crosstalk Due to Stimulated Brillouin Scattering in Monomode Fibre,” Electron. Lett. 21, 1114–1115 (1985).
[CrossRef]

1983 (1)

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

1982 (1)

D. Cotter, “Observation of Stimulated Brillouin Scattering in Low-Loss Silica Fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
[CrossRef]

1980 (1)

1979 (1)

A. H. Hartog, A. J. Conduit, D. N. Payne, “Variation of Pulse Delay with Stress and Temperature in Jacketed and Unjacketed Optical Fibres,” Opt. Quantum Electron. 11, 265–273 (1979).
[CrossRef]

1969 (1)

A. S. Pine, “Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz,” Phys. Rev. 185, 1187–1193 (1969).
[CrossRef]

Atkins, C. G.

D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
[CrossRef]

Azuma, Y.

Braun, R. P.

R. G. Waarts, R. P. Braun, “Crosstalk Due to Stimulated Brillouin Scattering in Monomode Fibre,” Electron. Lett. 21, 1114–1115 (1985).
[CrossRef]

Chraplyvy, A. R.

A. R. Chraplyvy, R. W. Tkach, “Narrowband Tunable Optical Filter for Channel Selection in Densely Packed WDM Systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

Conduit, A. J.

A. H. Hartog, A. J. Conduit, D. N. Payne, “Variation of Pulse Delay with Stress and Temperature in Jacketed and Unjacketed Optical Fibres,” Opt. Quantum Electron. 11, 265–273 (1979).
[CrossRef]

Cotter, D.

D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
[CrossRef]

D. Cotter, “Observation of Stimulated Brillouin Scattering in Low-Loss Silica Fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
[CrossRef]

Hartog, A. H.

A. H. Hartog, A. J. Conduit, D. N. Payne, “Variation of Pulse Delay with Stress and Temperature in Jacketed and Unjacketed Optical Fibres,” Opt. Quantum Electron. 11, 265–273 (1979).
[CrossRef]

Horiguchi, T.

Ishida, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

Katsuyama, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

Kobayashi, H.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

Kurashima, T.

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers,” IEEE Photon. Tech. Lett. PTL-1, 107–108 (1989).
[CrossRef]

Mitsunaga, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

Olsson, N. A.

N. A. Olsson, J. P. van der Ziel, “Cancellation of Fiber Loss by Semiconductor Laser Pumped Brillouin Amplification at 1.5 μm,” Appl. Phys. Lett. 48, 1329–1330 (1986).
[CrossRef]

Payne, D. N.

A. H. Hartog, A. J. Conduit, D. N. Payne, “Variation of Pulse Delay with Stress and Temperature in Jacketed and Unjacketed Optical Fibres,” Opt. Quantum Electron. 11, 265–273 (1979).
[CrossRef]

Pine, A. S.

A. S. Pine, “Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz,” Phys. Rev. 185, 1187–1193 (1969).
[CrossRef]

Shibata, N.

Smith, D. W.

D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
[CrossRef]

Sugawara, Y.

Tanaka, S.

Tateda, M.

Tkach, R. W.

A. R. Chraplyvy, R. W. Tkach, “Narrowband Tunable Optical Filter for Channel Selection in Densely Packed WDM Systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

van der Ziel, J. P.

N. A. Olsson, J. P. van der Ziel, “Cancellation of Fiber Loss by Semiconductor Laser Pumped Brillouin Amplification at 1.5 μm,” Appl. Phys. Lett. 48, 1329–1330 (1986).
[CrossRef]

Waarts, R. G.

R. G. Waarts, R. P. Braun, “Crosstalk Due to Stimulated Brillouin Scattering in Monomode Fibre,” Electron. Lett. 21, 1114–1115 (1985).
[CrossRef]

Wyatt, R.

D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. A. Olsson, J. P. van der Ziel, “Cancellation of Fiber Loss by Semiconductor Laser Pumped Brillouin Amplification at 1.5 μm,” Appl. Phys. Lett. 48, 1329–1330 (1986).
[CrossRef]

Electron. Lett. (4)

D. Cotter, “Observation of Stimulated Brillouin Scattering in Low-Loss Silica Fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
[CrossRef]

R. G. Waarts, R. P. Braun, “Crosstalk Due to Stimulated Brillouin Scattering in Monomode Fibre,” Electron. Lett. 21, 1114–1115 (1985).
[CrossRef]

D. W. Smith, C. G. Atkins, D. Cotter, R. Wyatt, “Application of Brillouin Amplification in Coherent Optical Transmission,” Electron. Lett. 22, 556–558 (1986).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, “Narrowband Tunable Optical Filter for Channel Selection in Densely Packed WDM Systems,” Electron. Lett. 22, 1084–1085 (1986).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

T. Horiguchi, T. Kurashima, M. Tateda, “Tensile Strain Dependence of Brillouin Frequency Shift in Silica Optical Fibers,” IEEE Photon. Tech. Lett. PTL-1, 107–108 (1989).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. H. Hartog, A. J. Conduit, D. N. Payne, “Variation of Pulse Delay with Stress and Temperature in Jacketed and Unjacketed Optical Fibres,” Opt. Quantum Electron. 11, 265–273 (1979).
[CrossRef]

Phys. Rev. (1)

A. S. Pine, “Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz,” Phys. Rev. 185, 1187–1193 (1969).
[CrossRef]

Trans. IECE Jpn. (1)

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Life-Time Design of Optical Cable Strength,” Trans. IECE Jpn. J66-B, 1051–1058 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for measuring temperature dependence of the Brillouin frequency shift.

Fig. 2
Fig. 2

Brillouin grain spectra for fiber B.

Fig. 3
Fig. 3

Temperature dependence of the Brillouin frequency shift.

Fig. 4
Fig. 4

Temperature dependence of the tensile strain.

Tables (3)

Tables Icon

Table I Fiber Parameters

Tables Icon

Table II Temperature Coefficient of the Brillouin Frequency Shift and Strain

Tables Icon

Table III Young’s Modulus and Thermal Expansion Coefficient of Silica Fiber and Coating Material

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d ν B / d T = ( d ν B / d T ) 1 + ( d ν B / d T ) 2 .
( d ν B / d T ) 2 = ( d ν B / d ɛ ) × ( d ɛ / d T ) .
d ɛ / d T = A i E i α i / A i E i .
( d ν B / d T ) 2 = 0.05 MHz / ° C             for fiber A ,
( d ν B / d T ) 2 = 2.50 MHz / ° C             for fiber B ,
( d ν B / d T ) 1 = 1.17 MHz / ° C             for fiber A ,
( d ν B / d T ) 1 = 1.18 MHz / ° C             for fiber B .
( d ɛ / d T ) error = ( d ν B / d T ) 1 / ( d ν B / d ɛ ) = 2.10 × 10 - 5 1 / ° C .

Metrics