Abstract

Bending losses of three types of circular hollow waveguide have been investigated experimentally for a wide spectral range of infrared wavelengths.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  2. T. W. MacDougall, P. E. Sanders, M. S. Maklad, EOTec/3M Corporation, private communication.
  3. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [CrossRef]
  4. E. D. Palik, Handbook of Optical Constant of Solids (Academic, Orlando, FL, 1985), Part 2, pp. 749–763.
  5. M. Miyagi, “Consideration on Realization of Low-Loss Total Reflection-Type Hollow-Core Fiber at Mid-Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 843, 76–79 (1987).
  6. S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-Core Silica Waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
    [CrossRef]
  7. M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” lEEE/OSA J, Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  8. M. Miyagi, S. Karasawa, “Waveguide Losses in Sharply Bent Circular Hollow Waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]

1990 (1)

1989 (1)

1987 (2)

M. Miyagi, “Consideration on Realization of Low-Loss Total Reflection-Type Hollow-Core Fiber at Mid-Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 843, 76–79 (1987).

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-Core Silica Waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

1984 (1)

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” lEEE/OSA J, Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Devereux, R. W. J.

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-Core Silica Waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

Hongo, A.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Jenkins, R. M.

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-Core Silica Waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

Karasawa, S.

Kawakami, S.

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” lEEE/OSA J, Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

MacDougall, T. W.

T. W. MacDougall, P. E. Sanders, M. S. Maklad, EOTec/3M Corporation, private communication.

Maklad, M. S.

T. W. MacDougall, P. E. Sanders, M. S. Maklad, EOTec/3M Corporation, private communication.

Matsuura, Y.

Miyagi, M.

M. Miyagi, S. Karasawa, “Waveguide Losses in Sharply Bent Circular Hollow Waveguides,” Appl. Opt. 29, 367–370 (1990).
[CrossRef] [PubMed]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, “Consideration on Realization of Low-Loss Total Reflection-Type Hollow-Core Fiber at Mid-Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 843, 76–79 (1987).

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” lEEE/OSA J, Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constant of Solids (Academic, Orlando, FL, 1985), Part 2, pp. 749–763.

Saito, M.

Sanders, P. E.

T. W. MacDougall, P. E. Sanders, M. S. Maklad, EOTec/3M Corporation, private communication.

Wilson, S. J.

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-Core Silica Waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of Germanium-Coated Nickel Hollow Waveguides for Infrared Transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-Core Silica Waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

lEEE/OSA J, Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” lEEE/OSA J, Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Miyagi, “Consideration on Realization of Low-Loss Total Reflection-Type Hollow-Core Fiber at Mid-Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 843, 76–79 (1987).

Other (2)

T. W. MacDougall, P. E. Sanders, M. S. Maklad, EOTec/3M Corporation, private communication.

E. D. Palik, Handbook of Optical Constant of Solids (Academic, Orlando, FL, 1985), Part 2, pp. 749–763.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measuring bending losses.

Fig. 2
Fig. 2

Bending loss spectra of an EOTec hollow core fiber with an inner diameter of 1 mm and a bent length of 85 cm.

Fig. 3
Fig. 3

Bending loss spectra of a Ge:Ni hollow waveguide with an inner diameter of 1.5 mm and a bent length of 83 cm.

Fig. 4
Fig. 4

Attenuation of various hollow waveguides whose bent portion is around 85 cm as a function of the curvature.

Metrics