Abstract

The possibility of dielectric-coated metallic hollow waveguides that can deliver 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light simultaneously with low transmission loss is shown theoretically and experimentally.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Alenikov et al., “CO Laser Applications in Surgery,” Opt. Laser Technol. 16, 265–266 (1984).
    [CrossRef]
  2. H. Sato, M. Kawase, M. Saito, “Fiber-Coupled CO2 Laser for Medical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 576, 99–104 (1985).
  3. E. Sinofsky, “Comparative Thermal Modeling of Er:YAG, Ho:YAG and CO2 Laser Pulses for Tissue Vaporization,” Proc. Soc. Photo-Opt. Instrum. Eng. 712, 188–192 (1987).
  4. M. Saito, M. Takizawa, “Teflon-Clad As-S Glass Infrared Fiber with Low-Absorption Loss,” J. Appl. Phys. 59, 1450–1452 (1986).
    [CrossRef]
  5. M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” IEEE/OSA J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  6. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  7. Y. Matsuura, M. Miyagi, A. Hongo, “Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO2 Laser Light Transmission,” Opt. Laser Technol. 22, 141–145 (1990).
    [CrossRef]

1990 (1)

Y. Matsuura, M. Miyagi, A. Hongo, “Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO2 Laser Light Transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

1989 (1)

1987 (1)

E. Sinofsky, “Comparative Thermal Modeling of Er:YAG, Ho:YAG and CO2 Laser Pulses for Tissue Vaporization,” Proc. Soc. Photo-Opt. Instrum. Eng. 712, 188–192 (1987).

1986 (1)

M. Saito, M. Takizawa, “Teflon-Clad As-S Glass Infrared Fiber with Low-Absorption Loss,” J. Appl. Phys. 59, 1450–1452 (1986).
[CrossRef]

1985 (1)

H. Sato, M. Kawase, M. Saito, “Fiber-Coupled CO2 Laser for Medical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 576, 99–104 (1985).

1984 (2)

V. S. Alenikov et al., “CO Laser Applications in Surgery,” Opt. Laser Technol. 16, 265–266 (1984).
[CrossRef]

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” IEEE/OSA J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Alenikov, V. S.

V. S. Alenikov et al., “CO Laser Applications in Surgery,” Opt. Laser Technol. 16, 265–266 (1984).
[CrossRef]

Hongo, A.

Y. Matsuura, M. Miyagi, A. Hongo, “Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO2 Laser Light Transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” IEEE/OSA J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Kawase, M.

H. Sato, M. Kawase, M. Saito, “Fiber-Coupled CO2 Laser for Medical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 576, 99–104 (1985).

Matsuura, Y.

Y. Matsuura, M. Miyagi, A. Hongo, “Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO2 Laser Light Transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Miyagi, M.

Y. Matsuura, M. Miyagi, A. Hongo, “Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO2 Laser Light Transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” IEEE/OSA J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Saito, M.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss Characteristics of Circular Hollow Waveguides for Incoherent Infrared Light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Saito, M. Takizawa, “Teflon-Clad As-S Glass Infrared Fiber with Low-Absorption Loss,” J. Appl. Phys. 59, 1450–1452 (1986).
[CrossRef]

H. Sato, M. Kawase, M. Saito, “Fiber-Coupled CO2 Laser for Medical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 576, 99–104 (1985).

Sato, H.

H. Sato, M. Kawase, M. Saito, “Fiber-Coupled CO2 Laser for Medical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 576, 99–104 (1985).

Sinofsky, E.

E. Sinofsky, “Comparative Thermal Modeling of Er:YAG, Ho:YAG and CO2 Laser Pulses for Tissue Vaporization,” Proc. Soc. Photo-Opt. Instrum. Eng. 712, 188–192 (1987).

Takizawa, M.

M. Saito, M. Takizawa, “Teflon-Clad As-S Glass Infrared Fiber with Low-Absorption Loss,” J. Appl. Phys. 59, 1450–1452 (1986).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” IEEE/OSA J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Appl. Phys. (1)

M. Saito, M. Takizawa, “Teflon-Clad As-S Glass Infrared Fiber with Low-Absorption Loss,” J. Appl. Phys. 59, 1450–1452 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Laser Technol. (2)

Y. Matsuura, M. Miyagi, A. Hongo, “Loss Reduction of Dielectric-Coated Metallic Hollow Waveguide for CO2 Laser Light Transmission,” Opt. Laser Technol. 22, 141–145 (1990).
[CrossRef]

V. S. Alenikov et al., “CO Laser Applications in Surgery,” Opt. Laser Technol. 16, 265–266 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

H. Sato, M. Kawase, M. Saito, “Fiber-Coupled CO2 Laser for Medical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 576, 99–104 (1985).

E. Sinofsky, “Comparative Thermal Modeling of Er:YAG, Ho:YAG and CO2 Laser Pulses for Tissue Vaporization,” Proc. Soc. Photo-Opt. Instrum. Eng. 712, 188–192 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Configuration of the dielectric-coated metallic hollow waveguide.

Fig. 2
Fig. 2

Theoretical attenuation spectra of Ge/Ag waveguides with thicknesses of 0.46 and 0.05 μm, respectively, for the Ge layer, and the ZnSe/Ag waveguide with a thickness of 0.82 μm.

Fig. 3
Fig. 3

Measured loss spectra of an uncoated Ni pipe and Ge/Ag waveguides with coating thicknesses of 0.46 and 0.05 μm, respectively. The length and diameter of the waveguides are 1 m and 1.5 mm, respectively.

Metrics