Abstract

To fully use the advantages of optics in optical neural networks, an incoherent optical neuron (ION) model is proposed. The main purpose of this model is to provide for the requisite subtraction of signals without the phase sensitivity of a fully coherent system and without the cumbrance of photon–electron conversion and electronic subtraction. The ION model can subtract inhibitory from excitatory neuron inputs by using two device responses. Functionally it accommodates positive and negative weights, excitatory and inhibitory inputs, non-negative neuron outputs, and can be used in a variety of neural network models. This technique can implement conventional inner-product neuron units and Grossberg’s mass action law neuron units. Some implementation considerations, such as the effect of nonlinearities on device response, noise, and fan-in/fan-out capability, are discussed and simulated by computer. An experimental demonstration of optical excitation and inhibition on a 2-D array of neuron units using a single Hughes liquid crystal light valve is also reported.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription