Abstract

The advent of optoelectronic computers and highly parallel electronic processors has brought about a need for storage systems with enormous memory capacity and memory bandwidth. These demands cannot be met with current memory technologies (i.e., semiconductor, magnetic, or optical disk) without having the memory system completely dominate the processors in terms of the overall cost, power consumption, volume, and weight. As a solution, we propose an optical volume memory based on the two-photon effect which allows for high density and parallel access. In addition, the two-photon 3-D memory system has the advantages of having high capacity and throughput which may overcome the disadvantages of current memories.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. DeCegama, Parallel Processing Architecture and VLSI Hardware (Prentice Hall, Englewood Cliffs, NJ, 1989).
  2. B. Robinson, “Grand Challenges to Supercomputing,” Electron. Eng. Times (18Sept.1989).
  3. R. H. Ewald, W. J. Worlton, “A Review of Supercomputer Installations’ Mass Storage Requirements,” IEEE Symp. Mass Storage Syst. 33 (1985).
  4. H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
    [CrossRef]
  5. W. P. Altman, G. M. Claffie, M. L. Levene, “Optical Storage for High Performance Applications in the Late 1980s and Beyond,” RCA Eng. 31, 46–55 (1986).
  6. A. E. Bell, “Critical Issues in High-Density Magnetic and Optical Data Storage: Part 1,” Laser Focus 19, 61–66 (1983).
  7. J. Mallinson, UCSD Center for Magnetic Recording Research; private communication.
  8. K. R. Wallgren, “Optical Disks and Supercomputers,” Proc. Soc. Photo-Opt. Instrum. Eng. 529, 212–216 (1985).
  9. D. Chen, J. D. Zook, “An Overview of Optical Data Storage Technology,” Proc. IEEE 63, 1207–1230 (1975).
    [CrossRef]
  10. J. E. Weaver, T. K. Gaylord, “Evaluation Experiments on Holographic Storage of Binary Data in Electro-Optic Crystals,” Opt. Eng. 20, 404–411 (1981).
    [CrossRef]
  11. U. P. Wild, S. E. Bucher, F. A. Burkhalter, “Hole Burning, Stark Effect, and Data Storage,” Appl. Opt. 24, 1526–1530 (1985).
    [CrossRef] [PubMed]
  12. L. d’Auria, J. P. Huignard, C. Slezak, Spitz, “Experimental Holographic Read–Write Memory Using 3-D Storage,” Appl. Opt. 13, 808–818 (1974).
    [CrossRef] [PubMed]
  13. N. W. Carlson, L. J. Rothberg, A. G. Yodh, “Storage and Time Reversal of Light Pulses Using Photon Echoes,” Opt. Lett. 8, 483–485 (1983).
    [CrossRef] [PubMed]
  14. P. Lambropoulos, S. J. Smith, Eds., Multiphoton Processes (Springer-Verlag, Berlin, 1984).
    [CrossRef]
  15. R. M. MacFarlane, “Photon Aided Spectral Hole Burning,” J. Luminesc. 38, 20–24 (1987).
    [CrossRef]
  16. P. M. Rentzepis, “3-Dimensional Optical Memory,” U.S. Patent Application No.07/342,978 (1989).
  17. R. C. Bertelson, “Photochromic Processes Involving Heterolytic Cleavage,” in Techniques of Chemistry: Photochromism, Vol. 3, G. M. Brown, Ed. (Wiley-Interscience, New York, 1971), p. 45.
  18. D. A. Parthenopoulos, P. M. Rentzepis, “Three Dimensional Optical Storage Memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  19. S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
    [CrossRef]
  20. E. L. Kral, J. F. Walkup, M. O. Hagler, “Correlation Properties of Random Phase Diffusers for Multiplex Holography,” Appl. Opt. 21, 1281–1290 (1982).
    [CrossRef] [PubMed]
  21. S. T. Kowel, D. S. Cleverly, P. G. Kornreich, “Focusing by Electical Modulation of Refraction in a Liquid Crystal Cell,” Appl. Opt. 23, 278–289 (1984).
    [CrossRef] [PubMed]
  22. IEEE Scientific Supercomputer Subcommittee, “Special Report on Supercomputing,” Computer 22, No. 11, 57–68 (1989).
  23. L. W. Tucker, G. G. Robertson, “Architecture and Applications of the Connection Machine,” Computer 21, No. 8, 26–38 (1988).
    [CrossRef]
  24. C. G. Winckless, “Massively Parallel Computer for Signal and Image Processing,” in Proceedings, IEEE International Symposium on Circuits and Systems, Portland, OR (8–11 May 1989), pp. 1396–1399.
  25. R. A. Heaton, D. W. Blevins, “BLITZEN: A VLSI Array Processing Chip,” in Proceedings, IEEE Custom Integrated Circuits Conference, San Diego (1989), pp. 12.1.1–12.1.5.
  26. M. J. Little, J. Grinberg, “The Third Dimension,” Byte 13, 311–319 (Nov.1988).
  27. Y. Akasaka, “Three-Dimensional Integrated Circuit: Technology and Application Prospect,” Microelectron. J. 20, Nos. 1–2, 105–112 (1989).
    [CrossRef]
  28. F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
    [CrossRef]
  29. L. Curran, “Wafer-Scale Integration Arrives in ’Disk’ Form,” Electron. Design (26Oct.1989).
  30. J. Vaughan, “Peripheral Memory Options Multiply,” Special Supplement on Computers & Peripherals: Storage, Electron. Design News (30Nov.1989).

1989 (7)

B. Robinson, “Grand Challenges to Supercomputing,” Electron. Eng. Times (18Sept.1989).

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
[CrossRef]

D. A. Parthenopoulos, P. M. Rentzepis, “Three Dimensional Optical Storage Memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

IEEE Scientific Supercomputer Subcommittee, “Special Report on Supercomputing,” Computer 22, No. 11, 57–68 (1989).

Y. Akasaka, “Three-Dimensional Integrated Circuit: Technology and Application Prospect,” Microelectron. J. 20, Nos. 1–2, 105–112 (1989).
[CrossRef]

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

L. Curran, “Wafer-Scale Integration Arrives in ’Disk’ Form,” Electron. Design (26Oct.1989).

1988 (2)

L. W. Tucker, G. G. Robertson, “Architecture and Applications of the Connection Machine,” Computer 21, No. 8, 26–38 (1988).
[CrossRef]

M. J. Little, J. Grinberg, “The Third Dimension,” Byte 13, 311–319 (Nov.1988).

1987 (1)

R. M. MacFarlane, “Photon Aided Spectral Hole Burning,” J. Luminesc. 38, 20–24 (1987).
[CrossRef]

1986 (2)

S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
[CrossRef]

W. P. Altman, G. M. Claffie, M. L. Levene, “Optical Storage for High Performance Applications in the Late 1980s and Beyond,” RCA Eng. 31, 46–55 (1986).

1985 (3)

R. H. Ewald, W. J. Worlton, “A Review of Supercomputer Installations’ Mass Storage Requirements,” IEEE Symp. Mass Storage Syst. 33 (1985).

K. R. Wallgren, “Optical Disks and Supercomputers,” Proc. Soc. Photo-Opt. Instrum. Eng. 529, 212–216 (1985).

U. P. Wild, S. E. Bucher, F. A. Burkhalter, “Hole Burning, Stark Effect, and Data Storage,” Appl. Opt. 24, 1526–1530 (1985).
[CrossRef] [PubMed]

1984 (1)

1983 (2)

N. W. Carlson, L. J. Rothberg, A. G. Yodh, “Storage and Time Reversal of Light Pulses Using Photon Echoes,” Opt. Lett. 8, 483–485 (1983).
[CrossRef] [PubMed]

A. E. Bell, “Critical Issues in High-Density Magnetic and Optical Data Storage: Part 1,” Laser Focus 19, 61–66 (1983).

1982 (1)

1981 (1)

J. E. Weaver, T. K. Gaylord, “Evaluation Experiments on Holographic Storage of Binary Data in Electro-Optic Crystals,” Opt. Eng. 20, 404–411 (1981).
[CrossRef]

1975 (1)

D. Chen, J. D. Zook, “An Overview of Optical Data Storage Technology,” Proc. IEEE 63, 1207–1230 (1975).
[CrossRef]

1974 (1)

Akasaka, Y.

Y. Akasaka, “Three-Dimensional Integrated Circuit: Technology and Application Prospect,” Microelectron. J. 20, Nos. 1–2, 105–112 (1989).
[CrossRef]

Altman, W. P.

W. P. Altman, G. M. Claffie, M. L. Levene, “Optical Storage for High Performance Applications in the Late 1980s and Beyond,” RCA Eng. 31, 46–55 (1986).

Bell, A. E.

A. E. Bell, “Critical Issues in High-Density Magnetic and Optical Data Storage: Part 1,” Laser Focus 19, 61–66 (1983).

Bertelson, R. C.

R. C. Bertelson, “Photochromic Processes Involving Heterolytic Cleavage,” in Techniques of Chemistry: Photochromism, Vol. 3, G. M. Brown, Ed. (Wiley-Interscience, New York, 1971), p. 45.

Blevins, D. W.

R. A. Heaton, D. W. Blevins, “BLITZEN: A VLSI Array Processing Chip,” in Proceedings, IEEE Custom Integrated Circuits Conference, San Diego (1989), pp. 12.1.1–12.1.5.

Bucher, S. E.

Burkhalter, F. A.

Carlson, N. W.

Chen, D.

D. Chen, J. D. Zook, “An Overview of Optical Data Storage Technology,” Proc. IEEE 63, 1207–1230 (1975).
[CrossRef]

Claffie, G. M.

W. P. Altman, G. M. Claffie, M. L. Levene, “Optical Storage for High Performance Applications in the Late 1980s and Beyond,” RCA Eng. 31, 46–55 (1986).

Cleverly, D. S.

Curran, L.

L. Curran, “Wafer-Scale Integration Arrives in ’Disk’ Form,” Electron. Design (26Oct.1989).

d’Auria, L.

DeCegama, A. L.

A. L. DeCegama, Parallel Processing Architecture and VLSI Hardware (Prentice Hall, Englewood Cliffs, NJ, 1989).

Drabik, T.

S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
[CrossRef]

Esener, S.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
[CrossRef]

Ewald, R. H.

R. H. Ewald, W. J. Worlton, “A Review of Supercomputer Installations’ Mass Storage Requirements,” IEEE Symp. Mass Storage Syst. 33 (1985).

Fainman, Y.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

Gaylord, T. K.

J. E. Weaver, T. K. Gaylord, “Evaluation Experiments on Holographic Storage of Binary Data in Electro-Optic Crystals,” Opt. Eng. 20, 404–411 (1981).
[CrossRef]

Grinberg, J.

M. J. Little, J. Grinberg, “The Third Dimension,” Byte 13, 311–319 (Nov.1988).

Groeseneken, G.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
[CrossRef]

Guest, C. C.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

Hagler, M. O.

Heaton, R. A.

R. A. Heaton, D. W. Blevins, “BLITZEN: A VLSI Array Processing Chip,” in Proceedings, IEEE Custom Integrated Circuits Conference, San Diego (1989), pp. 12.1.1–12.1.5.

Huignard, J. P.

Kiamilev, F.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

Kornreich, P. G.

Kowel, S. T.

Kral, E. L.

Lebon, H.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
[CrossRef]

Lee, S. H.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
[CrossRef]

Levene, M. L.

W. P. Altman, G. M. Claffie, M. L. Levene, “Optical Storage for High Performance Applications in the Late 1980s and Beyond,” RCA Eng. 31, 46–55 (1986).

Little, M. J.

M. J. Little, J. Grinberg, “The Third Dimension,” Byte 13, 311–319 (Nov.1988).

MacFarlane, R. M.

R. M. MacFarlane, “Photon Aided Spectral Hole Burning,” J. Luminesc. 38, 20–24 (1987).
[CrossRef]

Maes, H. E.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
[CrossRef]

Mallinson, J.

J. Mallinson, UCSD Center for Magnetic Recording Research; private communication.

Mercier, P.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three Dimensional Optical Storage Memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Paturi, R.

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three Dimensional Optical Storage Memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

P. M. Rentzepis, “3-Dimensional Optical Memory,” U.S. Patent Application No.07/342,978 (1989).

Robertson, G. G.

L. W. Tucker, G. G. Robertson, “Architecture and Applications of the Connection Machine,” Computer 21, No. 8, 26–38 (1988).
[CrossRef]

Robinson, B.

B. Robinson, “Grand Challenges to Supercomputing,” Electron. Eng. Times (18Sept.1989).

Rothberg, L. J.

Slezak, C.

Spitz,

Title, M.

S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
[CrossRef]

Tucker, L. W.

L. W. Tucker, G. G. Robertson, “Architecture and Applications of the Connection Machine,” Computer 21, No. 8, 26–38 (1988).
[CrossRef]

Vaughan, J.

J. Vaughan, “Peripheral Memory Options Multiply,” Special Supplement on Computers & Peripherals: Storage, Electron. Design News (30Nov.1989).

Walkup, J. F.

Wallgren, K. R.

K. R. Wallgren, “Optical Disks and Supercomputers,” Proc. Soc. Photo-Opt. Instrum. Eng. 529, 212–216 (1985).

Weaver, J. E.

J. E. Weaver, T. K. Gaylord, “Evaluation Experiments on Holographic Storage of Binary Data in Electro-Optic Crystals,” Opt. Eng. 20, 404–411 (1981).
[CrossRef]

Wild, U. P.

Winckless, C. G.

C. G. Winckless, “Massively Parallel Computer for Signal and Image Processing,” in Proceedings, IEEE International Symposium on Circuits and Systems, Portland, OR (8–11 May 1989), pp. 1396–1399.

Witters, J.

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
[CrossRef]

Worlton, W. J.

R. H. Ewald, W. J. Worlton, “A Review of Supercomputer Installations’ Mass Storage Requirements,” IEEE Symp. Mass Storage Syst. 33 (1985).

Yodh, A. G.

Zook, J. D.

D. Chen, J. D. Zook, “An Overview of Optical Data Storage Technology,” Proc. IEEE 63, 1207–1230 (1975).
[CrossRef]

Appl. Opt. (4)

Byte (1)

M. J. Little, J. Grinberg, “The Third Dimension,” Byte 13, 311–319 (Nov.1988).

Computer (2)

IEEE Scientific Supercomputer Subcommittee, “Special Report on Supercomputing,” Computer 22, No. 11, 57–68 (1989).

L. W. Tucker, G. G. Robertson, “Architecture and Applications of the Connection Machine,” Computer 21, No. 8, 26–38 (1988).
[CrossRef]

Electron. Design (1)

L. Curran, “Wafer-Scale Integration Arrives in ’Disk’ Form,” Electron. Design (26Oct.1989).

Electron. Eng. Times (1)

B. Robinson, “Grand Challenges to Supercomputing,” Electron. Eng. Times (18Sept.1989).

IEEE Symp. Mass Storage Syst. (1)

R. H. Ewald, W. J. Worlton, “A Review of Supercomputer Installations’ Mass Storage Requirements,” IEEE Symp. Mass Storage Syst. 33 (1985).

J. Luminesc. (1)

R. M. MacFarlane, “Photon Aided Spectral Hole Burning,” J. Luminesc. 38, 20–24 (1987).
[CrossRef]

Laser Focus (1)

A. E. Bell, “Critical Issues in High-Density Magnetic and Optical Data Storage: Part 1,” Laser Focus 19, 61–66 (1983).

Microelectron. J. (2)

H. E. Maes, G. Groeseneken, H. Lebon, J. Witters, “Trends in Semiconductor Memories,” Microelectron. J. 20, Nos. 1–2, 9–57 (1989).
[CrossRef]

Y. Akasaka, “Three-Dimensional Integrated Circuit: Technology and Application Prospect,” Microelectron. J. 20, Nos. 1–2, 105–112 (1989).
[CrossRef]

Opt. Eng. (3)

F. Kiamilev, S. Esener, R. Paturi, Y. Fainman, P. Mercier, C. C. Guest, S. H. Lee, “Programmable Optoelectronic Multiprocessors and Their Comparison with Symbolic Substitution for Digital Optical Computing,” Opt. Eng. 28, 396–409 (1989).
[CrossRef]

S. H. Lee, S. Esener, M. Title, T. Drabik, “Two-Dimensional Si/PLZT Spatial Light Modulator Design Considerations and Technology,” Opt. Eng. 25, 250–260 (1986).
[CrossRef]

J. E. Weaver, T. K. Gaylord, “Evaluation Experiments on Holographic Storage of Binary Data in Electro-Optic Crystals,” Opt. Eng. 20, 404–411 (1981).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

D. Chen, J. D. Zook, “An Overview of Optical Data Storage Technology,” Proc. IEEE 63, 1207–1230 (1975).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

K. R. Wallgren, “Optical Disks and Supercomputers,” Proc. Soc. Photo-Opt. Instrum. Eng. 529, 212–216 (1985).

RCA Eng. (1)

W. P. Altman, G. M. Claffie, M. L. Levene, “Optical Storage for High Performance Applications in the Late 1980s and Beyond,” RCA Eng. 31, 46–55 (1986).

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three Dimensional Optical Storage Memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other (8)

C. G. Winckless, “Massively Parallel Computer for Signal and Image Processing,” in Proceedings, IEEE International Symposium on Circuits and Systems, Portland, OR (8–11 May 1989), pp. 1396–1399.

R. A. Heaton, D. W. Blevins, “BLITZEN: A VLSI Array Processing Chip,” in Proceedings, IEEE Custom Integrated Circuits Conference, San Diego (1989), pp. 12.1.1–12.1.5.

J. Vaughan, “Peripheral Memory Options Multiply,” Special Supplement on Computers & Peripherals: Storage, Electron. Design News (30Nov.1989).

A. L. DeCegama, Parallel Processing Architecture and VLSI Hardware (Prentice Hall, Englewood Cliffs, NJ, 1989).

J. Mallinson, UCSD Center for Magnetic Recording Research; private communication.

P. M. Rentzepis, “3-Dimensional Optical Memory,” U.S. Patent Application No.07/342,978 (1989).

R. C. Bertelson, “Photochromic Processes Involving Heterolytic Cleavage,” in Techniques of Chemistry: Photochromism, Vol. 3, G. M. Brown, Ed. (Wiley-Interscience, New York, 1971), p. 45.

P. Lambropoulos, S. J. Smith, Eds., Multiphoton Processes (Springer-Verlag, Berlin, 1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical addressing of data inside a volume using two orthogonal beams incident on the two-photon material.

Fig. 2
Fig. 2

Schematic energy level diagram of the write and read forms of the photochromic molecule. “X” is an intermediate to the isomerization of the spirobenzopyrans. The structures of the two forms of SP as well as the laser wavelengths used for writing and reading are shown also.

Fig. 3
Fig. 3

Room temperature visible absorption spectrum of 1% SP in a PSt film. Upper curve: after irradiation for 5s with 355 nm, pulse fluence, 4 mJ/cm2. Lower curve: after irradiation for 60 s with 532 and 1064 nm; total pulse fluence, 20 mJ/cm2; beam diameter d = 1 cm.

Fig. 4
Fig. 4

Room temperature two-photon-induced fluorescence spectra of the colored merocyanine form of 1% SP in PMMA. Excitation wavelength, 1064 nm; pulse fluence, 1.5 mJ/cm2; beam diameter d = 2 mm.

Fig. 5
Fig. 5

Log–log plot of the two-photon fluorescence intensity vs excitation pulse energy. A slope of 2 within experimental error is observed.

Fig. 6
Fig. 6

Addressing a two-photon volume storage material. The dark regions indicate the written bits.

Fig. 7
Fig. 7

Two-photon 3-D memory system. The memory I/O is achieved via the input and output SLMs. The address manager controls the internal components to assure proper imaging between the data arrays and the correct memory layer.

Fig. 8
Fig. 8

Design for the holographic dynamic focusing lens. The system provides imaging between the information plane and any one of the desired output planes. The hologram has been made using random phase codes to achieve a multiplexed hologram of all the desired lens functions. An individual lens function is selected by presenting the correct phase code on a phase-only SLM.

Fig. 9
Fig. 9

Comparison of the two-photon 3-D memory device to other memory devices on the basis of access time and data transfer rate (bandwidth). The two-photon 3-D memory device provides a much higher bandwidth than present memory technologies due to parallel access.

Fig. 10
Fig. 10

Comparison of the two-photon 3-D memory device with other memory devices on the basis of access time and cost per megabyte. The two-photon 3-D memory device can potentially compete with magnetic and optical disk storage by providing faster access, higher density, and lower or equivalent cost per megabyte.

Fig. 11
Fig. 11

Maximum I/O bandwidth to secondary storage for parallel computers. Horizontal dashed lines indicate the bandwidth provided by various memory technologies. The two-photon 3-D memory device bandwidth far exceeds the data transfer rate of existing memory devices.

Fig. 12
Fig. 12

Clock cycle time for parallel computers. Dashed lines indicate the access time for the two-photon 3-D memory and other memory devices. For future optoelectronic parallel computers based on the POEM architecture, the two-photon 3-D memory device can serve as the main memory storage.

Tables (2)

Tables Icon

Table I Two-Photon 3-D Memory and Its Comparison with Other Memory Devices (per 1989 Data)

Tables Icon

Table II Two-Photon 3-D Memory for Parallel Computers

Metrics