Abstract

High Δ, small core single-mode fibers were investigated with emphasis on clarifying both their fundamental optical characteristics and on possible uses. Preparation of such high Δ single-mode fibers through the vapor phase axial deposition process made it possible to achieve the low transmission losses of 0.82 dB/km (at 1.61 μm) for a 2.9%-Δ fiber and 0.68 dB/km (at 1.62 μm) for a 1.9%-Δ fiber. Measurements of fundamental characteristics such as transmission loss spectrum, bending loss, dispersion, stimulated Raman scattering, and frequency chirping were made for high Δ single-mode fibers. Two possible uses were investigated: a direct coupling experiment achieved 43% coupling efficiency between high Δ fiber and a LED, and an optical pulse compression experiment in the 1.5-μm wavelength region provided pedestal-free optical pulses with 1.2-ps (FWHM) width.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, R. P. De Paula, “Single-Mode Fiber Components,” Proc. IEEE 75, 1498 (1987).
    [CrossRef]
  2. J. Noda, K. Okamoto, I. Yokohama, “Fiber Devices Using Polarization Maintaining Fibers,” Fiber Integrated Opt. 6, 309 (1987); “Single-Mode Fiber Devices,” Opto-electronics 1, 175 (1986).
    [CrossRef]
  3. S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensor and Related Technology (Springer-Verlag, New York, 1982).
  4. J. Noda, I. Yokohama, “Fiber Devices for Fiber Sensors,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1988), paper FEE1.
  5. R. H. Stolen, “Nonlinear Properties of Optical Fibers,” in Optical Fiber Telecommunication, S. E. Miller, A. G. Chynoweth, Eds. (Academic Press, New York, 1979) Chapt. 5; “Fiber Raman Laser,” Fiber Integrated Opt. 3, 21 (1980).
  6. R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
    [CrossRef]
  7. N. Edagawa, K. Mochizuki, Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers,” Electron. Lett. 23, 196 (1987).
    [CrossRef]
  8. C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
    [CrossRef]
  9. K. Tai, A. Tomita, “50× Optical Fiber Pulse Compression at 1.319 μm,” Appl. Phys. Lett. 48, 309 (1986).
    [CrossRef]
  10. T. D. Croft, J. E. Ritter, “Low Loss Dispersion-Shifted Single-Mode Fiber Manufactured by the OVD Process,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1985), paper WD2.
  11. R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.
  12. M. Kawachi, S. Tomaru, T. Edahira, S. Sudo, “Fabrication Method of Single-Mode Optical Fiber Preforms,” U.S. Patent4,345,928, filed 19Sept.1980.
  13. S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).
  14. H. Matsumura, T. Suganuma, “Normalization of Single-Mode Fibers having an Arbitrary Index Profile,” Appl. Opt. 19, 3151–3158 (1980).
    [CrossRef] [PubMed]
  15. N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
    [CrossRef]
  16. G. E. Berkey, “Fabrication of 0.4-N.A. Fibers by the Outside Process,” in Technical Digest, Conference of Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUG3.
  17. T. Hosaka, S. Sudo, K. Okamoto, M. Horiguchi (in Japanese), “Investigation on 1.55 μm Dispersion-Shifted Single-Mode Fibers,” Technical paper NIT Optoelectronics Laboratories, , 25 (1985).
  18. M. Horiguchi, “Studies on the Transmission Characteristics Measurements of Optical Fiber for Telecommunication,” Ph.D. Thesis in University of Tokyo (1981), p. 36; P. C. Schultz, “Ultraviolet Absorption of Titanium and Germanium in Fused Silica,” in Technical Digest, Eleventh International Congress on Glass (Conference sponsor, location, 1977), pp. 155–163.
  19. T. Miya, “Studies on the Transmission Loss Reduction and Low-Dispersion of Single-Mode Optical Fibers for the Long-Wavelength Use,” Ph.D. Thesis in Tohoku University (1983), p. 77.
  20. N. Shibata, “Studies on the Optical Properties of High-Silica Glass Fibers for Optical Communication,” Ph.D. Thesis in Nagoya University (1982), p. 54.
  21. K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
    [CrossRef]
  22. N. Shibata, M. Tsubokawa, M. Ohhashi, K. Kitayama, “Birefringence Properties of a Coiled Single-Mode Fiber and its Use in a Tuned Optical Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper THP4.
  23. M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fiber Ends,” Electron. Lett. 18, 71 (1982).
    [CrossRef]
  24. M. Saruwatari, T. Sugie, “Efficient Laser-Diode-Single-Mode-Fiber Coupling using two Confocal Lenses,” Electron. Lett. 16, 955 (1980).
    [CrossRef]
  25. G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient Coupling of Laser Diode to Tapered Monomode Fibers,” Electron. Lett. 19, 205 (1983).
    [CrossRef]
  26. H. C. Brito-Cruz, R. L. Fork, C. V. Shank, “Compression of Optical Pulses to 6 fs using Cubic Phase Distortion Compensation,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper MD1.
  27. B. Nikolaus, D. Grischkowsky, “90-fs Tunable Optical Pulses Obtained by Two-Stage Pulse Compression,” Appl. Phys. Lett. 43, 228 (1983).
    [CrossRef]
  28. K. Tai, A. Tomita, “1100× Optical Fiber Pulse Compression using Grating Pair and Soliton Effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033 (1986).
    [CrossRef]
  29. W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
    [CrossRef]

1987

N. Edagawa, K. Mochizuki, Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers,” Electron. Lett. 23, 196 (1987).
[CrossRef]

R. H. Stolen, R. P. De Paula, “Single-Mode Fiber Components,” Proc. IEEE 75, 1498 (1987).
[CrossRef]

J. Noda, K. Okamoto, I. Yokohama, “Fiber Devices Using Polarization Maintaining Fibers,” Fiber Integrated Opt. 6, 309 (1987); “Single-Mode Fiber Devices,” Opto-electronics 1, 175 (1986).
[CrossRef]

1986

C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
[CrossRef]

K. Tai, A. Tomita, “50× Optical Fiber Pulse Compression at 1.319 μm,” Appl. Phys. Lett. 48, 309 (1986).
[CrossRef]

K. Tai, A. Tomita, “1100× Optical Fiber Pulse Compression using Grating Pair and Soliton Effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033 (1986).
[CrossRef]

1985

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
[CrossRef]

1984

K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
[CrossRef]

W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

1983

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient Coupling of Laser Diode to Tapered Monomode Fibers,” Electron. Lett. 19, 205 (1983).
[CrossRef]

B. Nikolaus, D. Grischkowsky, “90-fs Tunable Optical Pulses Obtained by Two-Stage Pulse Compression,” Appl. Phys. Lett. 43, 228 (1983).
[CrossRef]

1982

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fiber Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

1981

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

1980

H. Matsumura, T. Suganuma, “Normalization of Single-Mode Fibers having an Arbitrary Index Profile,” Appl. Opt. 19, 3151–3158 (1980).
[CrossRef] [PubMed]

M. Saruwatari, T. Sugie, “Efficient Laser-Diode-Single-Mode-Fiber Coupling using two Confocal Lenses,” Electron. Lett. 16, 955 (1980).
[CrossRef]

1979

N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
[CrossRef]

Abiru, T.

R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.

Arditty, H. J.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensor and Related Technology (Springer-Verlag, New York, 1982).

Atkins, C. G.

C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
[CrossRef]

Berkey, G. E.

G. E. Berkey, “Fabrication of 0.4-N.A. Fibers by the Outside Process,” in Technical Digest, Conference of Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUG3.

Brito-Cruz, H. C.

H. C. Brito-Cruz, R. L. Fork, C. V. Shank, “Compression of Optical Pulses to 6 fs using Cubic Phase Distortion Compensation,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper MD1.

Cotter, D.

C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
[CrossRef]

Croft, T. D.

T. D. Croft, J. E. Ritter, “Low Loss Dispersion-Shifted Single-Mode Fiber Manufactured by the OVD Process,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1985), paper WD2.

De Paula, R. P.

R. H. Stolen, R. P. De Paula, “Single-Mode Fiber Components,” Proc. IEEE 75, 1498 (1987).
[CrossRef]

de Vrieze, H. M.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient Coupling of Laser Diode to Tapered Monomode Fibers,” Electron. Lett. 19, 205 (1983).
[CrossRef]

Edagawa, N.

N. Edagawa, K. Mochizuki, Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers,” Electron. Lett. 23, 196 (1987).
[CrossRef]

Edahira, T.

M. Kawachi, S. Tomaru, T. Edahira, S. Sudo, “Fabrication Method of Single-Mode Optical Fiber Preforms,” U.S. Patent4,345,928, filed 19Sept.1980.

Edahiro, T.

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fiber Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
[CrossRef]

Ezekiel, S.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensor and Related Technology (Springer-Verlag, New York, 1982).

Fork, R. L.

H. C. Brito-Cruz, R. L. Fork, C. V. Shank, “Compression of Optical Pulses to 6 fs using Cubic Phase Distortion Compensation,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper MD1.

Fukuda, O.

R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.

Grischkowsky, D.

B. Nikolaus, D. Grischkowsky, “90-fs Tunable Optical Pulses Obtained by Two-Stage Pulse Compression,” Appl. Phys. Lett. 43, 228 (1983).
[CrossRef]

Horiguchi, M.

T. Hosaka, S. Sudo, K. Okamoto, M. Horiguchi (in Japanese), “Investigation on 1.55 μm Dispersion-Shifted Single-Mode Fibers,” Technical paper NIT Optoelectronics Laboratories, , 25 (1985).

M. Horiguchi, “Studies on the Transmission Characteristics Measurements of Optical Fiber for Telecommunication,” Ph.D. Thesis in University of Tokyo (1981), p. 36; P. C. Schultz, “Ultraviolet Absorption of Titanium and Germanium in Fused Silica,” in Technical Digest, Eleventh International Congress on Glass (Conference sponsor, location, 1977), pp. 155–163.

Hosaka, T.

T. Hosaka, S. Sudo, K. Okamoto, M. Horiguchi (in Japanese), “Investigation on 1.55 μm Dispersion-Shifted Single-Mode Fibers,” Technical paper NIT Optoelectronics Laboratories, , 25 (1985).

Iwamoto, Y.

N. Edagawa, K. Mochizuki, Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers,” Electron. Lett. 23, 196 (1987).
[CrossRef]

Kawachi, M.

K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
[CrossRef]

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fiber Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
[CrossRef]

M. Kawachi, S. Tomaru, T. Edahira, S. Sudo, “Fabrication Method of Single-Mode Optical Fiber Preforms,” U.S. Patent4,345,928, filed 19Sept.1980.

Khoe, G. D.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient Coupling of Laser Diode to Tapered Monomode Fibers,” Electron. Lett. 19, 205 (1983).
[CrossRef]

Kitayama, K.

N. Shibata, M. Tsubokawa, M. Ohhashi, K. Kitayama, “Birefringence Properties of a Coiled Single-Mode Fiber and its Use in a Tuned Optical Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper THP4.

Matsumura, H.

H. Matsumura, T. Suganuma, “Normalization of Single-Mode Fibers having an Arbitrary Index Profile,” Appl. Opt. 19, 3151–3158 (1980).
[CrossRef] [PubMed]

Mears, R. J.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Miya, T.

T. Miya, “Studies on the Transmission Loss Reduction and Low-Dispersion of Single-Mode Optical Fibers for the Long-Wavelength Use,” Ph.D. Thesis in Tohoku University (1983), p. 77.

Miyamoto, M.

R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.

Mochizuki, K.

N. Edagawa, K. Mochizuki, Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers,” Electron. Lett. 23, 196 (1987).
[CrossRef]

Nakahara, M.

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

Nikolaus, B.

B. Nikolaus, D. Grischkowsky, “90-fs Tunable Optical Pulses Obtained by Two-Stage Pulse Compression,” Appl. Phys. Lett. 43, 228 (1983).
[CrossRef]

Nishida, K.

R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.

Noda, J.

J. Noda, K. Okamoto, I. Yokohama, “Fiber Devices Using Polarization Maintaining Fibers,” Fiber Integrated Opt. 6, 309 (1987); “Single-Mode Fiber Devices,” Opto-electronics 1, 175 (1986).
[CrossRef]

K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
[CrossRef]

J. Noda, I. Yokohama, “Fiber Devices for Fiber Sensors,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1988), paper FEE1.

Ohhashi, M.

N. Shibata, M. Tsubokawa, M. Ohhashi, K. Kitayama, “Birefringence Properties of a Coiled Single-Mode Fiber and its Use in a Tuned Optical Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper THP4.

Okamoto, K.

J. Noda, K. Okamoto, I. Yokohama, “Fiber Devices Using Polarization Maintaining Fibers,” Fiber Integrated Opt. 6, 309 (1987); “Single-Mode Fiber Devices,” Opto-electronics 1, 175 (1986).
[CrossRef]

K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
[CrossRef]

T. Hosaka, S. Sudo, K. Okamoto, M. Horiguchi (in Japanese), “Investigation on 1.55 μm Dispersion-Shifted Single-Mode Fibers,” Technical paper NIT Optoelectronics Laboratories, , 25 (1985).

Payne, D. N.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Poole, S. B.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Poulissen, J.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient Coupling of Laser Diode to Tapered Monomode Fibers,” Electron. Lett. 19, 205 (1983).
[CrossRef]

Reekie, L.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
[CrossRef]

Ritter, J. E.

T. D. Croft, J. E. Ritter, “Low Loss Dispersion-Shifted Single-Mode Fiber Manufactured by the OVD Process,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1985), paper WD2.

Saruwatari, M.

M. Saruwatari, T. Sugie, “Efficient Laser-Diode-Single-Mode-Fiber Coupling using two Confocal Lenses,” Electron. Lett. 16, 955 (1980).
[CrossRef]

Shank, C. V.

W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

H. C. Brito-Cruz, R. L. Fork, C. V. Shank, “Compression of Optical Pulses to 6 fs using Cubic Phase Distortion Compensation,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper MD1.

Shibata, N.

N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
[CrossRef]

N. Shibata, “Studies on the Optical Properties of High-Silica Glass Fibers for Optical Communication,” Ph.D. Thesis in Nagoya University (1982), p. 54.

N. Shibata, M. Tsubokawa, M. Ohhashi, K. Kitayama, “Birefringence Properties of a Coiled Single-Mode Fiber and its Use in a Tuned Optical Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper THP4.

Smith, D. W.

C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
[CrossRef]

Stolen, R. H.

R. H. Stolen, R. P. De Paula, “Single-Mode Fiber Components,” Proc. IEEE 75, 1498 (1987).
[CrossRef]

W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

R. H. Stolen, “Nonlinear Properties of Optical Fibers,” in Optical Fiber Telecommunication, S. E. Miller, A. G. Chynoweth, Eds. (Academic Press, New York, 1979) Chapt. 5; “Fiber Raman Laser,” Fiber Integrated Opt. 3, 21 (1980).

Suda, H.

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

Sudo, S.

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
[CrossRef]

T. Hosaka, S. Sudo, K. Okamoto, M. Horiguchi (in Japanese), “Investigation on 1.55 μm Dispersion-Shifted Single-Mode Fibers,” Technical paper NIT Optoelectronics Laboratories, , 25 (1985).

M. Kawachi, S. Tomaru, T. Edahira, S. Sudo, “Fabrication Method of Single-Mode Optical Fiber Preforms,” U.S. Patent4,345,928, filed 19Sept.1980.

Suganuma, T.

H. Matsumura, T. Suganuma, “Normalization of Single-Mode Fibers having an Arbitrary Index Profile,” Appl. Opt. 19, 3151–3158 (1980).
[CrossRef] [PubMed]

Sugie, T.

M. Saruwatari, T. Sugie, “Efficient Laser-Diode-Single-Mode-Fiber Coupling using two Confocal Lenses,” Electron. Lett. 16, 955 (1980).
[CrossRef]

Tai, K.

K. Tai, A. Tomita, “50× Optical Fiber Pulse Compression at 1.319 μm,” Appl. Phys. Lett. 48, 309 (1986).
[CrossRef]

K. Tai, A. Tomita, “1100× Optical Fiber Pulse Compression using Grating Pair and Soliton Effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033 (1986).
[CrossRef]

Takada, K.

K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
[CrossRef]

Toba, H.

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fiber Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

Tomaru, S.

M. Kawachi, S. Tomaru, T. Edahira, S. Sudo, “Fabrication Method of Single-Mode Optical Fiber Preforms,” U.S. Patent4,345,928, filed 19Sept.1980.

Tomita, A.

K. Tai, A. Tomita, “50× Optical Fiber Pulse Compression at 1.319 μm,” Appl. Phys. Lett. 48, 309 (1986).
[CrossRef]

K. Tai, A. Tomita, “1100× Optical Fiber Pulse Compression using Grating Pair and Soliton Effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033 (1986).
[CrossRef]

Tomlinson, W. J.

W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

Tsubokawa, M.

N. Shibata, M. Tsubokawa, M. Ohhashi, K. Kitayama, “Birefringence Properties of a Coiled Single-Mode Fiber and its Use in a Tuned Optical Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper THP4.

Wyatt, R.

C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.

Yokohama, I.

J. Noda, K. Okamoto, I. Yokohama, “Fiber Devices Using Polarization Maintaining Fibers,” Fiber Integrated Opt. 6, 309 (1987); “Single-Mode Fiber Devices,” Opto-electronics 1, 175 (1986).
[CrossRef]

J. Noda, I. Yokohama, “Fiber Devices for Fiber Sensors,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1988), paper FEE1.

Appl. Opt.

H. Matsumura, T. Suganuma, “Normalization of Single-Mode Fibers having an Arbitrary Index Profile,” Appl. Opt. 19, 3151–3158 (1980).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Tai, A. Tomita, “1100× Optical Fiber Pulse Compression using Grating Pair and Soliton Effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033 (1986).
[CrossRef]

Appl. Phys. Lett.

B. Nikolaus, D. Grischkowsky, “90-fs Tunable Optical Pulses Obtained by Two-Stage Pulse Compression,” Appl. Phys. Lett. 43, 228 (1983).
[CrossRef]

Appl. Phys. Lett.

K. Tai, A. Tomita, “50× Optical Fiber Pulse Compression at 1.319 μm,” Appl. Phys. Lett. 48, 309 (1986).
[CrossRef]

Electron. Lett.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient Coupling of Laser Diode to Tapered Monomode Fibers,” Electron. Lett. 19, 205 (1983).
[CrossRef]

K. Okamoto, K. Takada, M. Kawachi, J. Noda, “All-PANDA-Fiber Gyroscope with Long-Form Stability,” Electron. Lett. 20, 429 (1984).
[CrossRef]

Electron. Lett.

M. Kawachi, T. Edahiro, H. Toba, “Microlens Formation on VAD Single-Mode Fiber Ends,” Electron. Lett. 18, 71 (1982).
[CrossRef]

M. Saruwatari, T. Sugie, “Efficient Laser-Diode-Single-Mode-Fiber Coupling using two Confocal Lenses,” Electron. Lett. 16, 955 (1980).
[CrossRef]

N. Shibata, M. Kawachi, S. Sudo, T. Edahiro, “Low-Loss High-Numerical Aperture for Optical Fiber Fabricated by VAD Method,” Electron. Lett. 15, 680 (1979).
[CrossRef]

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Neodymium-Doped Silica Single-Mode Fiber Laser,” Electron. Lett. 21, 738 (1985).
[CrossRef]

N. Edagawa, K. Mochizuki, Y. Iwamoto, “Simultaneous Amplification of Wavelength-Division-Multiplexed Signals by a Highly Efficient Fiber Raman Amplifier Pumped by High-Power Semiconductor Lasers,” Electron. Lett. 23, 196 (1987).
[CrossRef]

C. G. Atkins, D. Cotter, D. W. Smith, R. Wyatt, “Application Brillouin Amplification in the Coherent Optical Transmission,” Electron. Lett. 22, 556 (1986).
[CrossRef]

Fiber Integrated Opt.

J. Noda, K. Okamoto, I. Yokohama, “Fiber Devices Using Polarization Maintaining Fibers,” Fiber Integrated Opt. 6, 309 (1987); “Single-Mode Fiber Devices,” Opto-electronics 1, 175 (1986).
[CrossRef]

Inst. Electron. Commun. Eng. Jpn.-Trans.

S. Sudo, M. Kawachi, H. Suda, M. Nakahara, T. Edahiro, “Refractive-Index Profile Control Techniques in the Vapor-Phase Axial Deposition Method,” Inst. Electron. Commun. Eng. Jpn.-Trans. E64, 536 (1981).

J. Opt. Soc. Am. B

W. J. Tomlinson, R. H. Stolen, C. V. Shank, “Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

Proc. IEEE

R. H. Stolen, R. P. De Paula, “Single-Mode Fiber Components,” Proc. IEEE 75, 1498 (1987).
[CrossRef]

Other

G. E. Berkey, “Fabrication of 0.4-N.A. Fibers by the Outside Process,” in Technical Digest, Conference of Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper TUG3.

T. Hosaka, S. Sudo, K. Okamoto, M. Horiguchi (in Japanese), “Investigation on 1.55 μm Dispersion-Shifted Single-Mode Fibers,” Technical paper NIT Optoelectronics Laboratories, , 25 (1985).

M. Horiguchi, “Studies on the Transmission Characteristics Measurements of Optical Fiber for Telecommunication,” Ph.D. Thesis in University of Tokyo (1981), p. 36; P. C. Schultz, “Ultraviolet Absorption of Titanium and Germanium in Fused Silica,” in Technical Digest, Eleventh International Congress on Glass (Conference sponsor, location, 1977), pp. 155–163.

T. Miya, “Studies on the Transmission Loss Reduction and Low-Dispersion of Single-Mode Optical Fibers for the Long-Wavelength Use,” Ph.D. Thesis in Tohoku University (1983), p. 77.

N. Shibata, “Studies on the Optical Properties of High-Silica Glass Fibers for Optical Communication,” Ph.D. Thesis in Nagoya University (1982), p. 54.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensor and Related Technology (Springer-Verlag, New York, 1982).

J. Noda, I. Yokohama, “Fiber Devices for Fiber Sensors,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1988), paper FEE1.

R. H. Stolen, “Nonlinear Properties of Optical Fibers,” in Optical Fiber Telecommunication, S. E. Miller, A. G. Chynoweth, Eds. (Academic Press, New York, 1979) Chapt. 5; “Fiber Raman Laser,” Fiber Integrated Opt. 3, 21 (1980).

T. D. Croft, J. E. Ritter, “Low Loss Dispersion-Shifted Single-Mode Fiber Manufactured by the OVD Process,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1985), paper WD2.

R. Yamaguchi, K. Nishida, T. Abiru, M. Miyamoto, O. Fukuda, “Effect of an Additional Ring Profile on Transmission Characteristics of 1.55 μm Dispersion Shifted Fibers,” in Technical Digest, Optical Fiber Communication (Optical Society of America, Washington, DC, 1986), paper WF3.

M. Kawachi, S. Tomaru, T. Edahira, S. Sudo, “Fabrication Method of Single-Mode Optical Fiber Preforms,” U.S. Patent4,345,928, filed 19Sept.1980.

H. C. Brito-Cruz, R. L. Fork, C. V. Shank, “Compression of Optical Pulses to 6 fs using Cubic Phase Distortion Compensation,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper MD1.

N. Shibata, M. Tsubokawa, M. Ohhashi, K. Kitayama, “Birefringence Properties of a Coiled Single-Mode Fiber and its Use in a Tuned Optical Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1985), paper THP4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of standard VAD process. TV camera system monitors a core-cladding ratio.

Fig. 2
Fig. 2

Schematic diagram of the fiber drawing apparatus. A silica tube keeps the fiber surface clean before the coating process and drawing tension is measured in-line with a balance system.

Fig. 3
Fig. 3

High Δ single mode fiber. (a) Refractive-index profile, and (b) photograph of fiber cross section.

Fig. 4
Fig. 4

Transmission loss spectra for fiber A, fiber B, and a 2.7%-Δ multimode fiber.14,19 Curves indicated used a (wavelength)−4 plot. Curve for the 2.7%-Δ multimode fiber is derived from the experimental result indicated in Refs. 15 and 20.

Fig. 5
Fig. 5

Relationship between the softening temperature difference and the Rayleigh scattering coefficient. Data for fiber A, fiber B, and a 2.7%-Δ multimode fiber are designated.

Fig. 6
Fig. 6

Total transmission loss γ at wavelength 1.56 μm calculated for the index difference Δ with the index profile parameter α.

Fig. 7
Fig. 7

Bending loss characteristics for fiber A, fiber B, and Δ = 0.9% fiber (as a reference).

Fig. 8
Fig. 8

Stimulated Raman scattering (SRS) characteristics: curves A1 and A2 plot fiber A, curves B1 and B2 plot fiber B, and curve C1 plots fiber C.

Fig. 9
Fig. 9

Chirped spectral widths for fiber A, fiber B, and fiber C.

Fig. 10
Fig. 10

Schematic diagram for coupling experiments between the edge-emitting LED and the 1-m high Δ, single-mode fibers; (a) fiber with a flat end; and (b) fiber with an etched-lens end.

Fig. 11
Fig. 11

Coupling efficiency dependences on the displacement between the fiber ends and a LED: (a) dependence on the axial displacement, and (b) dependence on transverse displacement.

Fig. 12
Fig. 12

Coupling efficiencies dependence on the fiber N.A. for fiber A, fiber B, and fiber C.

Fig. 13
Fig. 13

Experimental setup for grating pair compression (first stage) and soliton compression (second stage).

Fig. 14
Fig. 14

Autocorrelation trace of the pulse compressed with a grating pair.

Fig. 15
Fig. 15

Autocorrelation trace of the pulse compressed through soliton effect following the grating pair compression.

Tables (2)

Tables Icon

Table I Fiber Parameters for Fiber A and Fiber B

Tables Icon

Table II Dispersion Values for Fiber A and Fiber B

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ total loss = 0 b ( γ R + γ U V + γ I R ) p ( r ) r d r / 0 b P ( r ) r d r ,
γ R = ( 0.58 + 24.8 Δ ) / λ 4 dB / km             ( see Ref .18 )
γ U V = 1.542 44.6 + 8.52 / ( n 1 - n 2 ) × exp ( 4.63 λ ) dB / km             ( see Ref .19 )
γ I R = { 3.4 - 33.0 ( n 1 - n 2 ) 1.42 } × 10 11 exp ( - 48.3 λ ) dB / km             ( see Ref .20 )

Metrics