Abstract

By using a theoretical model to describe coupling between an array of cores, it is shown that a range of monolithic wavelength flattened 1 × N couplers may be fabricated. Graphs of coupled power with coupling length are shown and the procedure for obtaining wavelength flattened devices is discussed for values of N ranging from 2 to 7. The fabrication and performance of a 1 × 7 coupler is described. The device has low excess loss (<0.3 dB) together with good coupling uniformity of <1% standard deviation at both 1.3 μm and 1.53 μm.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
    [CrossRef]
  2. C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
    [CrossRef]
  3. A. M. Hill, “One Sided Rearrangeable Optical Switching Networks,” IEEE J. Lightwave Technol. LT-4, 785–789 (1986).
    [CrossRef]
  4. D. B. Mortimore, “Wavelength-Flattened 8 × 8 Single-Mode Star Coupler,” Electron. Lett. 22, 1205–1206 (1986).
    [CrossRef]
  5. D. B. Mortimore, “Wavelength-Flattened Fused Couplers,” Electron. Lett. 21, 742–743 (1985).
    [CrossRef]
  6. A. W. Snyder, “Coupled Mode Theory for Optical Fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
    [CrossRef]
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), p. 392.
  8. J. V. Wright, “Variational Analysis of Fused Couplers,” Electron. Lett. 21, 1064–1065 (1985).
    [CrossRef]
  9. J. V. Wright, “The Wavelength Dependence of Fused Couplers,” Electron. Lett. 22, 320 (1986).
    [CrossRef]
  10. K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).
  11. D. B. Mortimore, J. W. Arkwright, “Monolithic Wavelength-Flattened 1 × 7 Single-Mode Fused Coupler,” Electron. Lett. 25, 606–607 (1989).
    [CrossRef]

1989 (1)

D. B. Mortimore, J. W. Arkwright, “Monolithic Wavelength-Flattened 1 × 7 Single-Mode Fused Coupler,” Electron. Lett. 25, 606–607 (1989).
[CrossRef]

1987 (1)

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

1986 (4)

J. V. Wright, “The Wavelength Dependence of Fused Couplers,” Electron. Lett. 22, 320 (1986).
[CrossRef]

K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).

A. M. Hill, “One Sided Rearrangeable Optical Switching Networks,” IEEE J. Lightwave Technol. LT-4, 785–789 (1986).
[CrossRef]

D. B. Mortimore, “Wavelength-Flattened 8 × 8 Single-Mode Star Coupler,” Electron. Lett. 22, 1205–1206 (1986).
[CrossRef]

1985 (3)

D. B. Mortimore, “Wavelength-Flattened Fused Couplers,” Electron. Lett. 21, 742–743 (1985).
[CrossRef]

J. V. Wright, “Variational Analysis of Fused Couplers,” Electron. Lett. 21, 1064–1065 (1985).
[CrossRef]

C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
[CrossRef]

1972 (1)

Arkwright, J. W.

D. B. Mortimore, J. W. Arkwright, “Monolithic Wavelength-Flattened 1 × 7 Single-Mode Fused Coupler,” Electron. Lett. 25, 606–607 (1989).
[CrossRef]

Ballance, J. W.

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

Burns, W. K.

C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
[CrossRef]

Corke, M.

K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).

Faulkner, D. W.

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

Hill, A. M.

A. M. Hill, “One Sided Rearrangeable Optical Switching Networks,” IEEE J. Lightwave Technol. LT-4, 785–789 (1986).
[CrossRef]

Hornung, S.

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

Kale, B. M.

K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).

Kopera, P. M.

K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), p. 392.

Moeller, R. P.

C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, J. W. Arkwright, “Monolithic Wavelength-Flattened 1 × 7 Single-Mode Fused Coupler,” Electron. Lett. 25, 606–607 (1989).
[CrossRef]

D. B. Mortimore, “Wavelength-Flattened 8 × 8 Single-Mode Star Coupler,” Electron. Lett. 22, 1205–1206 (1986).
[CrossRef]

D. B. Mortimore, “Wavelength-Flattened Fused Couplers,” Electron. Lett. 21, 742–743 (1985).
[CrossRef]

Payne, D. B.

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

Snyder, A. W.

A. W. Snyder, “Coupled Mode Theory for Optical Fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), p. 392.

Stern, J. R.

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

Sweeney, K. L.

K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).

Villarruel, C. A.

C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
[CrossRef]

Wang, C.

C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
[CrossRef]

Wright, J. V.

J. V. Wright, “The Wavelength Dependence of Fused Couplers,” Electron. Lett. 22, 320 (1986).
[CrossRef]

J. V. Wright, “Variational Analysis of Fused Couplers,” Electron. Lett. 21, 1064–1065 (1985).
[CrossRef]

Electron. Lett. (6)

J. R. Stern, J. W. Ballance, D. W. Faulkner, S. Hornung, D. B. Payne, “Passive Optical Local Networks for Telephony Applications and Beyond,” Electron. Lett. 23, 1255–1257(1987).
[CrossRef]

D. B. Mortimore, “Wavelength-Flattened 8 × 8 Single-Mode Star Coupler,” Electron. Lett. 22, 1205–1206 (1986).
[CrossRef]

D. B. Mortimore, “Wavelength-Flattened Fused Couplers,” Electron. Lett. 21, 742–743 (1985).
[CrossRef]

J. V. Wright, “Variational Analysis of Fused Couplers,” Electron. Lett. 21, 1064–1065 (1985).
[CrossRef]

J. V. Wright, “The Wavelength Dependence of Fused Couplers,” Electron. Lett. 22, 320 (1986).
[CrossRef]

D. B. Mortimore, J. W. Arkwright, “Monolithic Wavelength-Flattened 1 × 7 Single-Mode Fused Coupler,” Electron. Lett. 25, 606–607 (1989).
[CrossRef]

IEEE J. Lightwave Technol. (2)

C. A. Villarruel, C. Wang, R. P. Moeller, W. K. Burns, “Single-Mode Data Buses for Local Area Network Applications,” IEEE J. Lightwave Technol. LT-3, 472–477 (1985).
[CrossRef]

A. M. Hill, “One Sided Rearrangeable Optical Switching Networks,” IEEE J. Lightwave Technol. LT-4, 785–789 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

K. L. Sweeney, M. Corke, B. M. Kale, P. M. Kopera, “Wavelength Dependence of Devices Fabricated in Single-Mode Fiber,” Proc. Soc. Photo-Opt. Instrum. Eng. 630, 141–147 (1986).

Other (1)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), p. 392.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Central core region surrounded by a ring of identical cores in an infinite cladding medium.

Fig. 2
Fig. 2

Core positions for equal coupling to all outer fibers (a) equal spacing (b) cores grouped in pairs.

Fig. 3
Fig. 3

Coupling characteristics of three core array.

Fig. 4
Fig. 4

Bidirectional 1 × 2 splitter.

Fig. 5
Fig. 5

Coupling characteristics of four core array.

Fig. 6
Fig. 6

Coupling characteristics of five core array.

Fig. 7
Fig. 7

Coupling characteristics of five core array with outer cores grouped in pairs.

Fig. 8
Fig. 8

Coupling characteristics of six core array.

Fig. 9
Fig. 9

Coupling characteristics of seven core array.

Fig. 10
Fig. 10

SEM photograph showing typical cross section around the waist of the coupler.

Fig. 11
Fig. 11

Coupled power vs elongation of coupler during fabrication.

Fig. 12
Fig. 12

Histogram showing coupled power from the central fiber to each output fiber.

Fig. 13
Fig. 13

Spectral response of 1 × 7 coupler between 1.2 and 1.6 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d a k d z + i β a k = - i s k a s C k s ,
C k s = ( 2 Δ ) 1 / 2 U 2 ρ V 3 K 0 ( W d k s / ρ ) K 1 2 ( W ) ,
d a 0 d z + i β a 0 = - i n C 0 a r ,
d a r d z + i β a r = - i ( C 0 a 0 + 2 C a v a r ) ,
P 0 ( z ) = [ cos 2 ( C z ) + C av 2 C 2 sin 2 ( C z ) ] P 0 ( 0 ) P r ( z ) = C 0 2 C 2 sin 2 ( C z ) P 0 ( 0 ) ,
F = n C 0 2 C 2 = [ 1 + C av 2 n C 0 2 ] - 1 .

Metrics