Abstract

Plastic hollow fibers were made from plastic tubes covered on the internal wall with a metal layer (a-type) or a metal layer and dielectric layer on top of it (b-type). The CO2 laser energy transmission through the hollow fiber was measured as a function of the radius of curvature and the coupling lens (focal length at a constant fiber length). The yield of the transmission decreased in subtle curvatures (radius of curvature up to 100 cm) and remained almost constant as the curvature became sharper (down to radius of curvature of 13 cm). For the a-type fibers, the characteristics of attenuation depended on the focal length of the coupling lenses. The energy distribution at the output was measured and mapped. The experimental results showed that the maximum of the energy distribution is asymetrically positioned relative to the center and closer to the internal wall at a smaller bending radius. This was predicted in our previous theoretical calculation. The value of transmitted power attenuation was up to 1.4 dB/m. Maximum power at the output was 30 W, for a fiber of 50-cm length and a cross-sectional diameter of 1.9 mm. These types of hollow fiber have already been used in surgical experiments on dogs.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray Model for Transmission of Metallic-Dielectric Hollow Bent Cylindrical Waveguides,” Appl. Opt. 28, 708–712 (1989).
    [CrossRef] [PubMed]
  2. J. B. Hajdu, G. Krulik in Electroplating Engineering Hand-book, L. G. Durney, Ed. (Van Nostrand Reinhold, New York, 1980), pp. 202–205.
  3. E. B. Saubestre in Modern Electroplating, F. P. Lowenheim, Ed. (Wiley, New York, 1984), pp. 636–655.
  4. S. John, N. V. Shannagam, “Practical Formulations for Plating on ABS Plastics Metal Finishing,” Metal Finishing 84, 51 (1986).
  5. N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, “Hollow Fiber Waveguides and Method of Making Same,” Patent App.82697, 1987.
  6. A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide Infrared Glass Fibers,” J. Non-Cryst. Solids 74, 54 (1985).
    [CrossRef]
  7. I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.
  8. N. Croitoru, J. Dror, D. Mendlovic, “Plastic Hollow Tubes as Waveguides for IR Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 906, 191 (1988).
  9. J. Dror, I. Gannot, N. Croitoru, “Hollow Tubes for Transmitting IR Laser Energy for Surgery Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 112 (1989).

1989 (2)

J. Dror, I. Gannot, N. Croitoru, “Hollow Tubes for Transmitting IR Laser Energy for Surgery Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 112 (1989).

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray Model for Transmission of Metallic-Dielectric Hollow Bent Cylindrical Waveguides,” Appl. Opt. 28, 708–712 (1989).
[CrossRef] [PubMed]

1988 (1)

N. Croitoru, J. Dror, D. Mendlovic, “Plastic Hollow Tubes as Waveguides for IR Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 906, 191 (1988).

1986 (1)

S. John, N. V. Shannagam, “Practical Formulations for Plating on ABS Plastics Metal Finishing,” Metal Finishing 84, 51 (1986).

1985 (1)

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide Infrared Glass Fibers,” J. Non-Cryst. Solids 74, 54 (1985).
[CrossRef]

Bornstein, A.

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide Infrared Glass Fibers,” J. Non-Cryst. Solids 74, 54 (1985).
[CrossRef]

Croitoru, N.

J. Dror, I. Gannot, N. Croitoru, “Hollow Tubes for Transmitting IR Laser Energy for Surgery Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 112 (1989).

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray Model for Transmission of Metallic-Dielectric Hollow Bent Cylindrical Waveguides,” Appl. Opt. 28, 708–712 (1989).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, D. Mendlovic, “Plastic Hollow Tubes as Waveguides for IR Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 906, 191 (1988).

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide Infrared Glass Fibers,” J. Non-Cryst. Solids 74, 54 (1985).
[CrossRef]

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, “Hollow Fiber Waveguides and Method of Making Same,” Patent App.82697, 1987.

I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.

Dror, J.

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray Model for Transmission of Metallic-Dielectric Hollow Bent Cylindrical Waveguides,” Appl. Opt. 28, 708–712 (1989).
[CrossRef] [PubMed]

J. Dror, I. Gannot, N. Croitoru, “Hollow Tubes for Transmitting IR Laser Energy for Surgery Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 112 (1989).

N. Croitoru, J. Dror, D. Mendlovic, “Plastic Hollow Tubes as Waveguides for IR Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 906, 191 (1988).

I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, “Hollow Fiber Waveguides and Method of Making Same,” Patent App.82697, 1987.

Gannot, I.

J. Dror, I. Gannot, N. Croitoru, “Hollow Tubes for Transmitting IR Laser Energy for Surgery Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 112 (1989).

I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.

Giler, S.

I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.

Goldenberg, E.

Hajdu, J. B.

J. B. Hajdu, G. Krulik in Electroplating Engineering Hand-book, L. G. Durney, Ed. (Van Nostrand Reinhold, New York, 1980), pp. 202–205.

John, S.

S. John, N. V. Shannagam, “Practical Formulations for Plating on ABS Plastics Metal Finishing,” Metal Finishing 84, 51 (1986).

Kaplan, I.

I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.

Krulik, G.

J. B. Hajdu, G. Krulik in Electroplating Engineering Hand-book, L. G. Durney, Ed. (Van Nostrand Reinhold, New York, 1980), pp. 202–205.

Marom, E.

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide Infrared Glass Fibers,” J. Non-Cryst. Solids 74, 54 (1985).
[CrossRef]

Mendlovic, D.

D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray Model for Transmission of Metallic-Dielectric Hollow Bent Cylindrical Waveguides,” Appl. Opt. 28, 708–712 (1989).
[CrossRef] [PubMed]

N. Croitoru, J. Dror, D. Mendlovic, “Plastic Hollow Tubes as Waveguides for IR Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 906, 191 (1988).

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, “Hollow Fiber Waveguides and Method of Making Same,” Patent App.82697, 1987.

Ruschin, S.

Saubestre, E. B.

E. B. Saubestre in Modern Electroplating, F. P. Lowenheim, Ed. (Wiley, New York, 1984), pp. 636–655.

Shannagam, N. V.

S. John, N. V. Shannagam, “Practical Formulations for Plating on ABS Plastics Metal Finishing,” Metal Finishing 84, 51 (1986).

Appl. Opt. (1)

J. Non-Cryst. Solids (1)

A. Bornstein, N. Croitoru, E. Marom, “Chalcogenide Infrared Glass Fibers,” J. Non-Cryst. Solids 74, 54 (1985).
[CrossRef]

Metal Finishing (1)

S. John, N. V. Shannagam, “Practical Formulations for Plating on ABS Plastics Metal Finishing,” Metal Finishing 84, 51 (1986).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Dror, I. Gannot, N. Croitoru, “Hollow Tubes for Transmitting IR Laser Energy for Surgery Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 112 (1989).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. Croitoru, J. Dror, D. Mendlovic, “Plastic Hollow Tubes as Waveguides for IR Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 906, 191 (1988).

Other (4)

I. Kaplan, S. Giler, J. Dror, I. Gannot, N. Croitoru, “Applications of Plastic Hollow Fibers in CO2 Laser Surgery,” SPIE OE/LASE ’89, Los Angeles, Jan. 15–20, 1989.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, “Hollow Fiber Waveguides and Method of Making Same,” Patent App.82697, 1987.

J. B. Hajdu, G. Krulik in Electroplating Engineering Hand-book, L. G. Durney, Ed. (Van Nostrand Reinhold, New York, 1980), pp. 202–205.

E. B. Saubestre in Modern Electroplating, F. P. Lowenheim, Ed. (Wiley, New York, 1984), pp. 636–655.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Power transmission (% of input power) vs curvature for a hollow plastic fiber (I.D. 4 mm, length 50 cm), coupling lens focus f: 50 mm: (——) energy transmission in a fiber coated with metal (a-type); (- - - - - -) energy transmission in a fiber coated with a metal and dielectric layer (b-type).

Fig. 2
Fig. 2

Power transmission (% of input power) vs curvature for a hollow plastic fiber (I.D. 4 mm, length 50 cm), coupling lens focus f: 340 mm: (——) energy transmission in a fiber coated with metal (a-type); (- - - - - -) energy transmission in a fiber coated with a metal and dielectric layer (b-type).

Fig. 3
Fig. 3

Attenuation vs length of the plastic hollow fiber (I.D. 4 mm), coupling lens focus f: 50 mm: (——) attenuation in a fiber coated with metal (a-type); (- - - - - -) attenuation in a fiber coated with a metal and dielectric layer (b-type).

Fig. 4
Fig. 4

The two types of ray paths and the angles θ1 and θ2 corresponding to: (a) Path and angles θ1 and θ2 of ray incident on both walls; (b) Path of ray incident on one wall; and (c) Angles and parameters used to find conditions for the two propagation modes.

Fig. 5
Fig. 5

Three-dimensional graph of the normalized energy intensity I z , at the output of the b-type fiber for conditions of incidence on both walls.

Fig. 6
Fig. 6

Three-dimensional graph of the energy intensity I z at the output of the b-type fiber in relative values for the whispering gallery mode (incidence only on one wall).

Fig. 7
Fig. 7

Attenuation vs curvature in plastic hollow fiber (b-type) for various input powers: —— 10W, - - - - - - 5W, — — — 15W, — ·· — ·· — 20W, - - - - - - - 25W, and — — — 30W.

Tables (1)

Tables Icon

Table I Influence of input Energy and Exposure Time on Transmission at a Fixed Curvature (R = 0.5 m) of Tested Fibers

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ± d sin ( 90 ± α ) = R sin θ 1 , 2 ,
θ 1 , 2 = sin - 1 [ R R ± d cos α ]
cos α < R - d R .
α = tan - 1 [ r ( lens ) f ] ,

Metrics