Abstract

A contact-type line image sensor using a semiinsulating Pb2CrO5 thin film deposited on a glass substrate by an electron beam evaporation deposition technique is described. The sensor has a simple structure and a high scanning rate of 1 ms/line. An individual sensor element responds to light modulated at 100-kHz frequency, so a higher scanning rate is expected. A matrix driving method using a simple reading circuit is used to operate a sensor composed of 32 elements at a rate of 8 elements/mm. Some practical results on image reading are demonstrated.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
    [CrossRef]
  2. K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).
  3. T. Negas, “The System PbO-chromium Oxide in Air,” J. Am. Ceram. Soc. 51, 716–719 (1968).
    [CrossRef]
  4. K. Toda, S. Morita, “Photovoltaic Effect in Pb2CrO5 Ceramic,” J. Appl. Phys. 55, 210–212 (1984).
    [CrossRef]
  5. K. Toda, S. Morita, “Photoconductivity in a Pb2CrO5 Ceramic Disk with Surface Electrodes,” Appl. Phys. A 33, 231–233 (1984).
    [CrossRef]
  6. S. Morita, K. Toda, “Preparation of Pb2CrO5 Thin Films by an Electron Beam Evaporation Technique,” Appl. Phys. A 36, 131–137 (1985).
    [CrossRef]

1986 (1)

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

1985 (1)

S. Morita, K. Toda, “Preparation of Pb2CrO5 Thin Films by an Electron Beam Evaporation Technique,” Appl. Phys. A 36, 131–137 (1985).
[CrossRef]

1984 (2)

K. Toda, S. Morita, “Photovoltaic Effect in Pb2CrO5 Ceramic,” J. Appl. Phys. 55, 210–212 (1984).
[CrossRef]

K. Toda, S. Morita, “Photoconductivity in a Pb2CrO5 Ceramic Disk with Surface Electrodes,” Appl. Phys. A 33, 231–233 (1984).
[CrossRef]

1983 (1)

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

1968 (1)

T. Negas, “The System PbO-chromium Oxide in Air,” J. Am. Ceram. Soc. 51, 716–719 (1968).
[CrossRef]

Asama, K.

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

Harada, Y.

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

Hiranaka, K.

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

Ikeda, M.

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

Morita, S.

S. Morita, K. Toda, “Preparation of Pb2CrO5 Thin Films by an Electron Beam Evaporation Technique,” Appl. Phys. A 36, 131–137 (1985).
[CrossRef]

K. Toda, S. Morita, “Photovoltaic Effect in Pb2CrO5 Ceramic,” J. Appl. Phys. 55, 210–212 (1984).
[CrossRef]

K. Toda, S. Morita, “Photoconductivity in a Pb2CrO5 Ceramic Disk with Surface Electrodes,” Appl. Phys. A 33, 231–233 (1984).
[CrossRef]

Negas, T.

T. Negas, “The System PbO-chromium Oxide in Air,” J. Am. Ceram. Soc. 51, 716–719 (1968).
[CrossRef]

Nishikura, T.

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

Nisitani, M.

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

Ozawa, K.

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

Takagi, N.

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

Toda, K.

S. Morita, K. Toda, “Preparation of Pb2CrO5 Thin Films by an Electron Beam Evaporation Technique,” Appl. Phys. A 36, 131–137 (1985).
[CrossRef]

K. Toda, S. Morita, “Photovoltaic Effect in Pb2CrO5 Ceramic,” J. Appl. Phys. 55, 210–212 (1984).
[CrossRef]

K. Toda, S. Morita, “Photoconductivity in a Pb2CrO5 Ceramic Disk with Surface Electrodes,” Appl. Phys. A 33, 231–233 (1984).
[CrossRef]

Yanagisawa, S.

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

Yukami, N.

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

Appl. Phys. A (2)

K. Toda, S. Morita, “Photoconductivity in a Pb2CrO5 Ceramic Disk with Surface Electrodes,” Appl. Phys. A 33, 231–233 (1984).
[CrossRef]

S. Morita, K. Toda, “Preparation of Pb2CrO5 Thin Films by an Electron Beam Evaporation Technique,” Appl. Phys. A 36, 131–137 (1985).
[CrossRef]

IEEE Trans. Electron Devices (1)

N. Yukami, M. Ikeda, Y. Harada, M. Nisitani, T. Nishikura, “High-Speed CdS0.2Se0.8 Photoconductor and its Applcation to Line Image Sensors,” IEEE Trans. Electron Devices ED-33, 520–525 (1986).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. Negas, “The System PbO-chromium Oxide in Air,” J. Am. Ceram. Soc. 51, 716–719 (1968).
[CrossRef]

J. Appl. Phys. (1)

K. Toda, S. Morita, “Photovoltaic Effect in Pb2CrO5 Ceramic,” J. Appl. Phys. 55, 210–212 (1984).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (1)

K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa, K. Asama, “Contact-Type Linear Sensor using Amorphous Si Diode Array,” Jpn. J. Appl. Phys. Suppl. 22-1, 457–460 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section and top view of the Pb2CrO5 thin film contact-type line image sensor.

Fig. 2
Fig. 2

Microphotograph of the Pb2CrO5 contact-type line image sensor.

Fig. 3
Fig. 3

Block diagram of a reading circuit for matrix driving.

Fig. 4
Fig. 4

Experimental arrangement.

Fig. 5
Fig. 5

Measured photocurrent and dark current as a function of applied voltage under static conditions: ○ for photocurrent at light intensity of 46 mW/cm2 and ● for dark current.

Fig. 6
Fig. 6

Light intensity dependence of photocurrent.

Fig. 7
Fig. 7

Measured current deviation of a sensor element for a modulated light.

Fig. 8
Fig. 8

Photocurrent distribution for sensor elements under static conditions.

Fig. 9
Fig. 9

Dark current distribution for sensor elements under static conditions.

Fig. 10
Fig. 10

Photocurrents and dark currents as a function of the element number under operating conditions where pulse voltage was applied to the elements at a frequency of 2 kHz. Light intensity and applied voltage were 46 mW/cm2 and −40 V, respectively.

Fig. 11
Fig. 11

Typical time responses of output currents from irradiated and nonirradiated elements. Pulse width of applied voltage was 125 μs.

Fig. 12
Fig. 12

Examples of reading images reproduced by a printer.

Tables (1)

Tables Icon

Table I Specifications of a Pb2CrO5 contact-type line image sensor

Metrics