Abstract

We investigate the propagation of high energy laser beams through vaporizing metallic aerosols in the regime for which plasma generation becomes important. Plasma forms in the vapor layer surrounding the irradiated aerosols particles. Both plasma initiation and dynamics are studied. To describe plasma absorption, we include the effects of inverse bremsstrahlung and photoionization. An effective plasma absorption coefficient allows us to set up a coupled system of equations describing the system consisting of the beam and aerosol vapor.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Smith, “Gas Breakdown Initiated by Laser Interaction with Aerosols and Solid Surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
    [CrossRef]
  2. D. E. Lencioni, “The Effect of Dust on 10.6-μm Laser-Induced Air Breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
    [CrossRef]
  3. D. E. Lencioni, “Laser-Induced Air Breakdown for 1.06-μm Radiation,” Appl. Phys. Lett. 25, 15–17 (1974).
    [CrossRef]
  4. V. A. Pogodaev, A. E. Rozhdestvenskii, “Thresholds of Optical Breakdown in Weakly Absorbing Aqueous Aerosol,” J. Sov. Laser Res. 5, 260–262 (1984).
    [CrossRef]
  5. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma Spectroscopy of H, Li, and Na in Plumes Resulting from Laser-Induced Droplet Explosion,” Yale University preprint, (1987).
  6. A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers,” AIAA J. 16, 1296–1304 (1977).
    [CrossRef]
  7. G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminum Surfaces,” AIAA J. 19, 460–469 (1981).
    [CrossRef]
  8. S. M. Chitanvis, “A Hydrodynamic Model of Plasma Initiation off Irradiated Metallic Aerosols in Vacuum: The Diffusive Regime,” J. Appl. Phys. 65, 1838–1845 (1989).
    [CrossRef]
  9. R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573–3581 (1986).
    [CrossRef]
  10. R. L. Armstrong, A. Zardecki, “Diffusive and Convective Vaporization of Irradiated Droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
    [CrossRef]
  11. R. D. Janssen, P. J. O’Rourke, “con1d: A Computer Program for Calculating Spherically Symmetric Droplet Combustion,” Los Alamos National Laboratory Report LA-10269-MS (1984).
  12. R. L. Armstrong, S. A. W. Gerstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739–1746 (1985).
    [CrossRef]
  13. Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).
  14. O. N. Krokhin, “Generation of High-Temperature Vapors and Plasmas by Laser Radiation,” in Laser Handbook, Vol. 2, edited by F. T. Arecchi, E. O. Schultz-Dubois, (North-Holland, Amsterdam, 1972), p. 1371.
  15. A. Zardecki, R. L. Armstrong, “Energy Balance in Laser-Irradiated Vaporizing Droplets,” Appl. Opt. 27, 3690–3695 (1988).
    [CrossRef] [PubMed]
  16. R. L. Armstrong, “Aerosols Heating and Vaporization by Pulsed Light Beams,” Appl. Opt. 23, 148–155 (1984).
    [CrossRef] [PubMed]
  17. R. L. Armstrong, “Interactions of Absorbing Aerosols with Intense Light Beams,” J. Appl. Phys. 56, 2142–2153 (1984).
    [CrossRef]
  18. Y. P. Raizer, “Heating of a Gas by a Powerful Light Pulse,” Soviet Physics JETP 21, 1009–1017 (1965).
  19. R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

1989 (1)

S. M. Chitanvis, “A Hydrodynamic Model of Plasma Initiation off Irradiated Metallic Aerosols in Vacuum: The Diffusive Regime,” J. Appl. Phys. 65, 1838–1845 (1989).
[CrossRef]

1988 (1)

1987 (1)

R. L. Armstrong, A. Zardecki, “Diffusive and Convective Vaporization of Irradiated Droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

1986 (1)

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

1985 (1)

1984 (3)

R. L. Armstrong, “Aerosols Heating and Vaporization by Pulsed Light Beams,” Appl. Opt. 23, 148–155 (1984).
[CrossRef] [PubMed]

R. L. Armstrong, “Interactions of Absorbing Aerosols with Intense Light Beams,” J. Appl. Phys. 56, 2142–2153 (1984).
[CrossRef]

V. A. Pogodaev, A. E. Rozhdestvenskii, “Thresholds of Optical Breakdown in Weakly Absorbing Aqueous Aerosol,” J. Sov. Laser Res. 5, 260–262 (1984).
[CrossRef]

1981 (1)

G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminum Surfaces,” AIAA J. 19, 460–469 (1981).
[CrossRef]

1977 (2)

A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers,” AIAA J. 16, 1296–1304 (1977).
[CrossRef]

D. C. Smith, “Gas Breakdown Initiated by Laser Interaction with Aerosols and Solid Surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
[CrossRef]

1974 (1)

D. E. Lencioni, “Laser-Induced Air Breakdown for 1.06-μm Radiation,” Appl. Phys. Lett. 25, 15–17 (1974).
[CrossRef]

1973 (1)

D. E. Lencioni, “The Effect of Dust on 10.6-μm Laser-Induced Air Breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
[CrossRef]

1965 (1)

Y. P. Raizer, “Heating of a Gas by a Powerful Light Pulse,” Soviet Physics JETP 21, 1009–1017 (1965).

Armstrong, R. L.

A. Zardecki, R. L. Armstrong, “Energy Balance in Laser-Irradiated Vaporizing Droplets,” Appl. Opt. 27, 3690–3695 (1988).
[CrossRef] [PubMed]

R. L. Armstrong, A. Zardecki, “Diffusive and Convective Vaporization of Irradiated Droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

R. L. Armstrong, S. A. W. Gerstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739–1746 (1985).
[CrossRef]

R. L. Armstrong, “Aerosols Heating and Vaporization by Pulsed Light Beams,” Appl. Opt. 23, 148–155 (1984).
[CrossRef] [PubMed]

R. L. Armstrong, “Interactions of Absorbing Aerosols with Intense Light Beams,” J. Appl. Phys. 56, 2142–2153 (1984).
[CrossRef]

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Biswas, A.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Chang, R. K.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma Spectroscopy of H, Li, and Na in Plumes Resulting from Laser-Induced Droplet Explosion,” Yale University preprint, (1987).

Chitanvis, S. M.

S. M. Chitanvis, “A Hydrodynamic Model of Plasma Initiation off Irradiated Metallic Aerosols in Vacuum: The Diffusive Regime,” J. Appl. Phys. 65, 1838–1845 (1989).
[CrossRef]

Eickmans, J. H.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma Spectroscopy of H, Li, and Na in Plumes Resulting from Laser-Induced Droplet Explosion,” Yale University preprint, (1987).

Fernandez, G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Gerstl, S. A. W.

Hsieh, W.-F.

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma Spectroscopy of H, Li, and Na in Plumes Resulting from Laser-Induced Droplet Explosion,” Yale University preprint, (1987).

Janssen, R. D.

R. D. Janssen, P. J. O’Rourke, “con1d: A Computer Program for Calculating Spherically Symmetric Droplet Combustion,” Los Alamos National Laboratory Report LA-10269-MS (1984).

Jennings, S. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Krokhin, O. N.

O. N. Krokhin, “Generation of High-Temperature Vapors and Plasmas by Laser Radiation,” in Laser Handbook, Vol. 2, edited by F. T. Arecchi, E. O. Schultz-Dubois, (North-Holland, Amsterdam, 1972), p. 1371.

Lencioni, D. E.

D. E. Lencioni, “Laser-Induced Air Breakdown for 1.06-μm Radiation,” Appl. Phys. Lett. 25, 15–17 (1974).
[CrossRef]

D. E. Lencioni, “The Effect of Dust on 10.6-μm Laser-Induced Air Breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
[CrossRef]

O’Rourke, P. J.

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

R. D. Janssen, P. J. O’Rourke, “con1d: A Computer Program for Calculating Spherically Symmetric Droplet Combustion,” Los Alamos National Laboratory Report LA-10269-MS (1984).

Pendleton, J. D.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Pinnick, R. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Pirri, A.

G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminum Surfaces,” AIAA J. 19, 460–469 (1981).
[CrossRef]

Pirri, A. N.

A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers,” AIAA J. 16, 1296–1304 (1977).
[CrossRef]

Pogodaev, V. A.

V. A. Pogodaev, A. E. Rozhdestvenskii, “Thresholds of Optical Breakdown in Weakly Absorbing Aqueous Aerosol,” J. Sov. Laser Res. 5, 260–262 (1984).
[CrossRef]

Raizer, Y. P.

Y. P. Raizer, “Heating of a Gas by a Powerful Light Pulse,” Soviet Physics JETP 21, 1009–1017 (1965).

Raizer, Yu. P.

Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

Root, R.

G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminum Surfaces,” AIAA J. 19, 460–469 (1981).
[CrossRef]

Root, R. G.

A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers,” AIAA J. 16, 1296–1304 (1977).
[CrossRef]

Rozhdestvenskii, A. E.

V. A. Pogodaev, A. E. Rozhdestvenskii, “Thresholds of Optical Breakdown in Weakly Absorbing Aqueous Aerosol,” J. Sov. Laser Res. 5, 260–262 (1984).
[CrossRef]

Smith, D. C.

D. C. Smith, “Gas Breakdown Initiated by Laser Interaction with Aerosols and Solid Surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
[CrossRef]

Weyl, G.

G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminum Surfaces,” AIAA J. 19, 460–469 (1981).
[CrossRef]

Wu, P. K. S.

A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers,” AIAA J. 16, 1296–1304 (1977).
[CrossRef]

Zardecki, A.

A. Zardecki, R. L. Armstrong, “Energy Balance in Laser-Irradiated Vaporizing Droplets,” Appl. Opt. 27, 3690–3695 (1988).
[CrossRef] [PubMed]

R. L. Armstrong, A. Zardecki, “Diffusive and Convective Vaporization of Irradiated Droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

R. L. Armstrong, S. A. W. Gerstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739–1746 (1985).
[CrossRef]

Zel’dovich, Ya. B.

Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

AIAA J. (2)

A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers,” AIAA J. 16, 1296–1304 (1977).
[CrossRef]

G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminum Surfaces,” AIAA J. 19, 460–469 (1981).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. E. Lencioni, “The Effect of Dust on 10.6-μm Laser-Induced Air Breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
[CrossRef]

D. E. Lencioni, “Laser-Induced Air Breakdown for 1.06-μm Radiation,” Appl. Phys. Lett. 25, 15–17 (1974).
[CrossRef]

J. Appl. Phys. (4)

S. M. Chitanvis, “A Hydrodynamic Model of Plasma Initiation off Irradiated Metallic Aerosols in Vacuum: The Diffusive Regime,” J. Appl. Phys. 65, 1838–1845 (1989).
[CrossRef]

R. L. Armstrong, “Interactions of Absorbing Aerosols with Intense Light Beams,” J. Appl. Phys. 56, 2142–2153 (1984).
[CrossRef]

R. L. Armstrong, A. Zardecki, “Diffusive and Convective Vaporization of Irradiated Droplets,” J. Appl. Phys. 62, 4571–4578 (1987).
[CrossRef]

D. C. Smith, “Gas Breakdown Initiated by Laser Interaction with Aerosols and Solid Surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Sov. Laser Res. (1)

V. A. Pogodaev, A. E. Rozhdestvenskii, “Thresholds of Optical Breakdown in Weakly Absorbing Aqueous Aerosol,” J. Sov. Laser Res. 5, 260–262 (1984).
[CrossRef]

Phys. Fluids (1)

R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573–3581 (1986).
[CrossRef]

Soviet Physics JETP (1)

Y. P. Raizer, “Heating of a Gas by a Powerful Light Pulse,” Soviet Physics JETP 21, 1009–1017 (1965).

Other (5)

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-Sized Droplets Irradiated with a Pulsed CO2 Laser: Measurement of Explosion and Breakdown Thresholds,” Appl. Opt. (in press).

Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

O. N. Krokhin, “Generation of High-Temperature Vapors and Plasmas by Laser Radiation,” in Laser Handbook, Vol. 2, edited by F. T. Arecchi, E. O. Schultz-Dubois, (North-Holland, Amsterdam, 1972), p. 1371.

R. D. Janssen, P. J. O’Rourke, “con1d: A Computer Program for Calculating Spherically Symmetric Droplet Combustion,” Los Alamos National Laboratory Report LA-10269-MS (1984).

J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma Spectroscopy of H, Li, and Na in Plumes Resulting from Laser-Induced Droplet Explosion,” Yale University preprint, (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Temperature profile vs time, and distance measured from edge of particle, Fmax = 2 × 109 W/cm2, tp = 5 × 10−7 sec, rd = 10 μm.

Fig. 2
Fig. 2

Electron number density for conditions of Fig. 1.

Fig. 3
Fig. 3

Plasma absorption efficiency factor, Qp, from Eq. (13), vs time for selected incident irradiance values.

Fig. 4
Fig. 4

Input pulse shape at entrance (z = 0) plane vs time and radial distance from beam axis, Fmax = 2 × 109 W/cm2, tp = 5 × 10−7 s.

Fig. 5
Fig. 5

Pulse shape of Fig. 4 at z = 2 m, plasma suppressed.

Fig. 6
Fig. 6

Pulse shape of Fig. 4 at z = 2 m with plasma.

Fig. 7
Fig. 7

Peak on-axis irradiance of pulse of Fig. 4 vs time and propagation distance into aerosol cloud, plasma suppressed.

Fig. 8
Fig. 8

Same as Fig. 7 with plasma.

Fig. 9
Fig. 9

1-D plot of maximum radial beam profile at selected propagation distances, plasma suppressed.

Fig. 10
Fig. 10

Same as Fig. 9 with plasma.

Fig. 11
Fig. 11

Aerosol radius on beam axis vs time and propagation distance into cloud, plasma suppressed.

Fig. 12
Fig. 12

Same as Fig. 11 with plasma.

Tables (1)

Tables Icon

Table I Reaction Rate Equation Parameters for Aluminum

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A + e = A * + e ,
A * + e = A + + e + e .
ρ ˙ k c = μ k = 1 L ( b k , - a k , ) ω ˙ ,
Q ˙ c = = 1 L ω ˙ Q .
Q = - k = 1 K ( b k , - a k , ) ( Δ H 0 ) k ,
ω ˙ = c f T η f exp ( - E f / T ) k = 1 K ( ρ k μ k ) a k - c b T η b exp ( - E b / T ) k = 1 K ( ρ k μ k ) b k , .
ρ k t + 1 r 2 r ( ρ k u r 2 ) = 1 r 2 [ ρ D r 2 r ( ρ k ρ ) ] + ρ ˙ k c ,
ρ u t + 1 r 2 r ( ρ u 2 r 2 ) + p r = 1 r 2 r ( r 2 r r ) - ϕ ϕ + θ θ r ,
ρ t + 1 r 2 r ( ρ u r 2 ) + p r 2 r ( u r 2 ) = 1 r 2 r ( κ r 2 T r ) + 1 r 2 × { r r 2 ρ D [ k = 1 K h k r ( ρ k ρ ) ] } + r r u r + ( ϕ ϕ + θ θ ) u r + Q ˙ c .
ρ t ( C T d + 1 2 v 2 ) + ρ · [ ( C T d + p d ρ + 1 2 v 2 ) v ] + · ( - κ T d ) = W ,
1 4 Q a F + κ ( T r ) r = a = 1 4 π r d 2 d d t ( 4 π r d 2 δ ρ d C T ) + M L + m 3 2 ρ 2 .
m = ρ ( u - d r d d t )
σ plasma d v = A Q p ,
( z + ϕ r + σ t ) I ( r , z , ϕ , t ) = σ s p ( ϕ - ϕ ) I ( r , z , ϕ , t ) d 2 ϕ .
F ( r , z , t ) = I ( r , z , ϕ , t ) d 2 ϕ .
σ t = σ s + σ a ,
σ eff = α a + σ plasma .

Metrics