Abstract

A nondestructive method for measurements of Nd3+ concentration in Nd:YLF laser rodes is presented. The method, based on the comparison of the intensities of Nd3+ luminescence lines to the intensities of the host matrix (LiYF4) Raman lines, requires the use of a micro-Raman spectrometer. The experimental conditions have been optimized and are described in detail. The investigations were performed in the concentration range 0at.% −2at.% of Nd and the calibration curve is presented. In standard use, the relative error on the results never exceeds 10%. Using this method to study the concentration gradient in a crystal is shown and the distribution coefficient of Nd3+ in LiYF4 is deduced.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Uhrin, R. F. Belt, “Preparation and Crystal Growth of Lithium Yttrium Fluoride for Laser Applications,” J. Crystal Growth 38, 38–44 (1977).
    [CrossRef]
  2. J. Y. Gesland, Thèse d’Etat-Le Mans, 1984 “Cristallogénèse de Fluorures pour Etudes Fondamenta les et Applications Optiques.”
  3. G. H. Dieke, H. M. Crosswhite, “The Spectra of the Doubly and Triply Ionized Rare Earths,” Appl. Opt. 2, 675–686 (1963).
    [CrossRef]
  4. K. K. Deb, R. G. Buser, J. Paul, “Decay Kinetics of 4F3/2 Fluorescence of Nd3+ in YAG at Room Temperature,” Appl. Opt. 20, 1203–1206 (1981).
    [CrossRef] [PubMed]
  5. M. A. Acharekar, “Spectrophotometric Analysis of Nd:YAG Laser Rods,” Laser Focus 11, 63–68 (1982).
  6. D. Sengupta, J. O. Artman, “Energy-Level Scheme for Nd3+ in LiYF4,” J. Chem. Phys. 53, 838–840 (1970).
    [CrossRef]
  7. D. E. Wortman, “Ground Term Energy States for Nd3+ in LiYF4,” J. Phys. Chem. Solids 33, 311–318 (1972).
    [CrossRef]
  8. A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
    [CrossRef]
  9. S. A. Miller, H. E. Rast, H. H. Caspers, “Lattice Vibrations of LiYF4,” J. Chem. Phys. 52, 4172–4175 (1970).
    [CrossRef]
  10. All the scans relative to the Raman lines are given in relative energy referenced to the Rayleigh line (cm−1); whereas, the luminescence lines are defined in absolute energy (cm−1).
  11. P. Dhamelincourt, J. Barbillat, M. Delhaye, “Laser Raman Microprobing Techniques,” J. Phys. Colloque C2-45, 249–253 (1984).
  12. M. Fornoni, Thèse Le Mans (1990), “Dosage du Neodyme dans les barreaux lasers YLFet YAG par microspectrométrie Raman.”
  13. P. Dhamelincourt, Thèse d’Etat, E Lille (1979) “Etude et realisation d’ume microsonde moleculaire à effet Raman: quelques domaines d’application.”
  14. Laboratory of analysis of CNRS.
  15. CEA Saclay.
  16. Proton-induced x-ray emission, Bordeaux, Gradignan.
  17. R. Castaing, “Fundamentals of Quantitative Electron-Probe Micro-Analysis,” Adv. X-Ray Anal. 4, 351–369 (1961).
    [CrossRef]
  18. R. Prakash, J. S. C. McKee, “A Review and Preview of Proton Microprobes,” Nucl. Instrum. Methods Phys. Res. Sect. B (Netherlands) B10/11, 679–682 (1985).
    [CrossRef]
  19. W. G. Pfann, Zone Melting (Wiley, New York, 1966).
  20. J. C. Brice, The Growth of Crystals from the Melt (North-Holland, Amsterdam, 1965).

1985 (1)

R. Prakash, J. S. C. McKee, “A Review and Preview of Proton Microprobes,” Nucl. Instrum. Methods Phys. Res. Sect. B (Netherlands) B10/11, 679–682 (1985).
[CrossRef]

1984 (1)

P. Dhamelincourt, J. Barbillat, M. Delhaye, “Laser Raman Microprobing Techniques,” J. Phys. Colloque C2-45, 249–253 (1984).

1982 (1)

M. A. Acharekar, “Spectrophotometric Analysis of Nd:YAG Laser Rods,” Laser Focus 11, 63–68 (1982).

1981 (1)

1977 (1)

R. Uhrin, R. F. Belt, “Preparation and Crystal Growth of Lithium Yttrium Fluoride for Laser Applications,” J. Crystal Growth 38, 38–44 (1977).
[CrossRef]

1972 (1)

D. E. Wortman, “Ground Term Energy States for Nd3+ in LiYF4,” J. Phys. Chem. Solids 33, 311–318 (1972).
[CrossRef]

1970 (2)

D. Sengupta, J. O. Artman, “Energy-Level Scheme for Nd3+ in LiYF4,” J. Chem. Phys. 53, 838–840 (1970).
[CrossRef]

S. A. Miller, H. E. Rast, H. H. Caspers, “Lattice Vibrations of LiYF4,” J. Chem. Phys. 52, 4172–4175 (1970).
[CrossRef]

1969 (1)

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

1963 (1)

1961 (1)

R. Castaing, “Fundamentals of Quantitative Electron-Probe Micro-Analysis,” Adv. X-Ray Anal. 4, 351–369 (1961).
[CrossRef]

Acharekar, M. A.

M. A. Acharekar, “Spectrophotometric Analysis of Nd:YAG Laser Rods,” Laser Focus 11, 63–68 (1982).

Artman, J. O.

D. Sengupta, J. O. Artman, “Energy-Level Scheme for Nd3+ in LiYF4,” J. Chem. Phys. 53, 838–840 (1970).
[CrossRef]

Barbillat, J.

P. Dhamelincourt, J. Barbillat, M. Delhaye, “Laser Raman Microprobing Techniques,” J. Phys. Colloque C2-45, 249–253 (1984).

Belt, R. F.

R. Uhrin, R. F. Belt, “Preparation and Crystal Growth of Lithium Yttrium Fluoride for Laser Applications,” J. Crystal Growth 38, 38–44 (1977).
[CrossRef]

Brice, J. C.

J. C. Brice, The Growth of Crystals from the Melt (North-Holland, Amsterdam, 1965).

Buser, R. G.

Caspers, H. H.

S. A. Miller, H. E. Rast, H. H. Caspers, “Lattice Vibrations of LiYF4,” J. Chem. Phys. 52, 4172–4175 (1970).
[CrossRef]

Castaing, R.

R. Castaing, “Fundamentals of Quantitative Electron-Probe Micro-Analysis,” Adv. X-Ray Anal. 4, 351–369 (1961).
[CrossRef]

Crosswhite, H. M.

d’Etat, Thèse

P. Dhamelincourt, Thèse d’Etat, E Lille (1979) “Etude et realisation d’ume microsonde moleculaire à effet Raman: quelques domaines d’application.”

d’Etat-Le Mans, Thèse

J. Y. Gesland, Thèse d’Etat-Le Mans, 1984 “Cristallogénèse de Fluorures pour Etudes Fondamenta les et Applications Optiques.”

Deb, K. K.

Delhaye, M.

P. Dhamelincourt, J. Barbillat, M. Delhaye, “Laser Raman Microprobing Techniques,” J. Phys. Colloque C2-45, 249–253 (1984).

Dhamelincourt, P.

P. Dhamelincourt, J. Barbillat, M. Delhaye, “Laser Raman Microprobing Techniques,” J. Phys. Colloque C2-45, 249–253 (1984).

P. Dhamelincourt, Thèse d’Etat, E Lille (1979) “Etude et realisation d’ume microsonde moleculaire à effet Raman: quelques domaines d’application.”

Dieke, G. H.

Fornoni, M.

M. Fornoni, Thèse Le Mans (1990), “Dosage du Neodyme dans les barreaux lasers YLFet YAG par microspectrométrie Raman.”

Gabbe, D. R.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Gesland, J. Y.

J. Y. Gesland, Thèse d’Etat-Le Mans, 1984 “Cristallogénèse de Fluorures pour Etudes Fondamenta les et Applications Optiques.”

Harmer, A. L.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Le Mans, Thèse

M. Fornoni, Thèse Le Mans (1990), “Dosage du Neodyme dans les barreaux lasers YLFet YAG par microspectrométrie Raman.”

Lille, E

P. Dhamelincourt, Thèse d’Etat, E Lille (1979) “Etude et realisation d’ume microsonde moleculaire à effet Raman: quelques domaines d’application.”

Linz, A.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

McKee, J. S. C.

R. Prakash, J. S. C. McKee, “A Review and Preview of Proton Microprobes,” Nucl. Instrum. Methods Phys. Res. Sect. B (Netherlands) B10/11, 679–682 (1985).
[CrossRef]

Miller, S. A.

S. A. Miller, H. E. Rast, H. H. Caspers, “Lattice Vibrations of LiYF4,” J. Chem. Phys. 52, 4172–4175 (1970).
[CrossRef]

Paul, J.

Pfann, W. G.

W. G. Pfann, Zone Melting (Wiley, New York, 1966).

Prakash, R.

R. Prakash, J. S. C. McKee, “A Review and Preview of Proton Microprobes,” Nucl. Instrum. Methods Phys. Res. Sect. B (Netherlands) B10/11, 679–682 (1985).
[CrossRef]

Rast, H. E.

S. A. Miller, H. E. Rast, H. H. Caspers, “Lattice Vibrations of LiYF4,” J. Chem. Phys. 52, 4172–4175 (1970).
[CrossRef]

Sengupta, D.

D. Sengupta, J. O. Artman, “Energy-Level Scheme for Nd3+ in LiYF4,” J. Chem. Phys. 53, 838–840 (1970).
[CrossRef]

Uhrin, R.

R. Uhrin, R. F. Belt, “Preparation and Crystal Growth of Lithium Yttrium Fluoride for Laser Applications,” J. Crystal Growth 38, 38–44 (1977).
[CrossRef]

Wortman, D. E.

D. E. Wortman, “Ground Term Energy States for Nd3+ in LiYF4,” J. Phys. Chem. Solids 33, 311–318 (1972).
[CrossRef]

Adv. X-Ray Anal. (1)

R. Castaing, “Fundamentals of Quantitative Electron-Probe Micro-Analysis,” Adv. X-Ray Anal. 4, 351–369 (1961).
[CrossRef]

Appl. Opt. (2)

J. Chem. Phys. (2)

D. Sengupta, J. O. Artman, “Energy-Level Scheme for Nd3+ in LiYF4,” J. Chem. Phys. 53, 838–840 (1970).
[CrossRef]

S. A. Miller, H. E. Rast, H. H. Caspers, “Lattice Vibrations of LiYF4,” J. Chem. Phys. 52, 4172–4175 (1970).
[CrossRef]

J. Crystal Growth (1)

R. Uhrin, R. F. Belt, “Preparation and Crystal Growth of Lithium Yttrium Fluoride for Laser Applications,” J. Crystal Growth 38, 38–44 (1977).
[CrossRef]

J. Phys. Chem. Solids (2)

D. E. Wortman, “Ground Term Energy States for Nd3+ in LiYF4,” J. Phys. Chem. Solids 33, 311–318 (1972).
[CrossRef]

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd3+ in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

J. Phys. Colloque (1)

P. Dhamelincourt, J. Barbillat, M. Delhaye, “Laser Raman Microprobing Techniques,” J. Phys. Colloque C2-45, 249–253 (1984).

Laser Focus (1)

M. A. Acharekar, “Spectrophotometric Analysis of Nd:YAG Laser Rods,” Laser Focus 11, 63–68 (1982).

Nucl. Instrum. Methods Phys. Res. Sect. B (Netherlands) (1)

R. Prakash, J. S. C. McKee, “A Review and Preview of Proton Microprobes,” Nucl. Instrum. Methods Phys. Res. Sect. B (Netherlands) B10/11, 679–682 (1985).
[CrossRef]

Other (9)

W. G. Pfann, Zone Melting (Wiley, New York, 1966).

J. C. Brice, The Growth of Crystals from the Melt (North-Holland, Amsterdam, 1965).

J. Y. Gesland, Thèse d’Etat-Le Mans, 1984 “Cristallogénèse de Fluorures pour Etudes Fondamenta les et Applications Optiques.”

M. Fornoni, Thèse Le Mans (1990), “Dosage du Neodyme dans les barreaux lasers YLFet YAG par microspectrométrie Raman.”

P. Dhamelincourt, Thèse d’Etat, E Lille (1979) “Etude et realisation d’ume microsonde moleculaire à effet Raman: quelques domaines d’application.”

Laboratory of analysis of CNRS.

CEA Saclay.

Proton-induced x-ray emission, Bordeaux, Gradignan.

All the scans relative to the Raman lines are given in relative energy referenced to the Rayleigh line (cm−1); whereas, the luminescence lines are defined in absolute energy (cm−1).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption spectrum of LiYF4:Nd3+ at room temperature. The arrow shows the 496.5 nm radiation (argon laser line) chosen for neodymium concentration measurements.

Fig. 2
Fig. 2

Raman spectrum of LiYF4 at room temperature. Exciting laser beam enters along the x-axis and is polarized along the z-axis. The scattered light is observed at 90° from incident direction with no analyzer.

Fig. 3
Fig. 3

Standard experimental configuration: laser beam is along [010] axis and polarized along the optical axis [001]. It is focused inside the sample at 60 μm below the surface. Both Raman line and luminescence band are observed in backscattering.

Fig. 4
Fig. 4

Surface effect: ρLR values as a function of focusing depth. Full squares: polished sample; open squares: unpolished sample.

Fig. 5
Fig. 5

Laser power effect: luminescence intensity IL, Ag Raman line intensity IR, and ρLR values as a function of laser power.

Fig. 6
Fig. 6

Orientation effect: intensity IR of the Ag Raman line as a function of angle ϑ between the [001] axis and the incident polarization. Points: experimental; solid line: least-squares fit.

Fig. 7
Fig. 7

Orientation effect: luminescence intensity IL, Ag Raman line intensity IR, and ρLR ratio values as a function of ϑ in the vicinity of zero.

Fig. 8
Fig. 8

Calibration curve: ρLR ratio values as a function of neodymium concentration. The right-hand corner vertical bar represents the typical error on the ρLR ratio. Horizontal bars indicate the incertainty in the concentration in reference samples as determined by x-ray fluorescence, PIXE probe, and chemical analysis.

Fig. 9
Fig. 9

Evidence of a concentration gradient along a long single crystal as determined from ρLR. The points represent the experimental data and the full line the least-squares fit according to Eq. (1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = 3 A g + 5 B g + 5 E g + 5 A u + 3 B u + 5 E u
A g : [ a . . . a . . . b ] B g : [ c d . d - c . . . . ] E g : [ . . e . . f e f . ] E g : [ . . - f . . e - f e . ]
[ N d 3 + ] = k C O ( 1 - g x ) ( k - 1 )

Metrics