Abstract

Solid state regenerative amplifiers have proved to be a reliable source for producing stable millijoule pulses as short as a few picoseconds at repetition rates ranging from a few hertz to several kilohertz. Here we report on the operation of a cw pumped Nd:YLF regenerative amplifier that uses a convex–concave design to optimize output energy and stability while minimizing the energy density on critical intracavity optical components. The amplifier yields stable 5-mJ 40-ps pulses at 700 Hz and has achieved 1-mJ output at a 3.5-kHz repetition rate. Results and analysis of the beam profile and contrast ratio for this system are also presented. Our results are contrasted to the general design considerations of regenerative amplifiers.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lowdermilk, J. E. Murray, “The Multipass Amplifier: Theory and Numerical Analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
    [CrossRef]
  2. W. H. Lowdermilk, J. E. Murray, “Nd:YAG Regenerative Amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
    [CrossRef]
  3. I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.
  4. I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz Synchronous Amplification of 85-Femtosecond Optical Pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
    [CrossRef]
  5. Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative Amplifications of Temporally Compressed Picosecond Pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
    [CrossRef]
  6. D. Strickland, G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  7. V. J. Newell, F. W. Deeg, S. R. Greenfield, M. D. Fayer, “Tunable Subpicosecond Dye Laser Amplified at 1 kHz by a Cavity-Dumped, Q-Switched, and Mode-Locked Nd:YAG Laser,” J. Opt. Soc. Am. B 6, 257–263 (1989).
    [CrossRef]
  8. P. Bado, M. Bouvier, J. S. Coe, “Nd:YLF Mode-Locked Oscillator and Regenerative Amplifier,” Opt. Lett. 12, 319–321 (1987).
    [CrossRef] [PubMed]
  9. A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
    [CrossRef]
  10. J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Press, Edinburgh, 1986).
  12. H. Vanherzeele, “Thermal Lensing Measurements and Compensation in a Continuous-Wave Mode-Locked Nd:YLF Laser,” Opt. Lett. 13, 369–371 (1988).
    [CrossRef] [PubMed]
  13. P. Bado, M. Bouvier, “Multikilohertz Pockels Cell Driver,” Rev. of Sci. Instrum. 56, 1744–1745 (1985).
    [CrossRef]
  14. H. Kogelnik, T. Li, “Laser Beams and Resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  15. K. C. Lui, affiliation Quantronix Corporation; private communication.
  16. R. Olson, affiliation Continuum Corporation; private communication.
  17. R. P. Hilberg, W. R. Hook, “Transient Elastooptic Effects and Q-Switching Performance in Lithium Niobate and KD*P Pockels Cells,” Appl. Opt. 9, 1939–1940 (1970).
    [PubMed]
  18. J. M. Dawes, M. G. Sceats, “A High Repetition Rate Pico-Synchronous Nd:YAG Laser,” Opt. Commun. 65, 275–278 (1988).
    [CrossRef]
  19. J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

1989

1988

J. M. Dawes, M. G. Sceats, “A High Repetition Rate Pico-Synchronous Nd:YAG Laser,” Opt. Commun. 65, 275–278 (1988).
[CrossRef]

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

H. Vanherzeele, “Thermal Lensing Measurements and Compensation in a Continuous-Wave Mode-Locked Nd:YLF Laser,” Opt. Lett. 13, 369–371 (1988).
[CrossRef] [PubMed]

1987

1986

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative Amplifications of Temporally Compressed Picosecond Pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

1985

D. Strickland, G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

P. Bado, M. Bouvier, “Multikilohertz Pockels Cell Driver,” Rev. of Sci. Instrum. 56, 1744–1745 (1985).
[CrossRef]

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz Synchronous Amplification of 85-Femtosecond Optical Pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

1980

W. H. Lowdermilk, J. E. Murray, “The Multipass Amplifier: Theory and Numerical Analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “Nd:YAG Regenerative Amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

1970

1969

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

1966

Bado, P.

P. Bado, M. Bouvier, J. S. Coe, “Nd:YLF Mode-Locked Oscillator and Regenerative Amplifier,” Opt. Lett. 12, 319–321 (1987).
[CrossRef] [PubMed]

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz Synchronous Amplification of 85-Femtosecond Optical Pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

P. Bado, M. Bouvier, “Multikilohertz Pockels Cell Driver,” Rev. of Sci. Instrum. 56, 1744–1745 (1985).
[CrossRef]

I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.

Baer, T.

I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.

Basseras, P.

J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

Bouvier, M.

P. Bado, M. Bouvier, J. S. Coe, “Nd:YLF Mode-Locked Oscillator and Regenerative Amplifier,” Opt. Lett. 12, 319–321 (1987).
[CrossRef] [PubMed]

P. Bado, M. Bouvier, “Multikilohertz Pockels Cell Driver,” Rev. of Sci. Instrum. 56, 1744–1745 (1985).
[CrossRef]

Chang, Y. J.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative Amplifications of Temporally Compressed Picosecond Pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

Coe, J. S.

Dawes, J. M.

J. M. Dawes, M. G. Sceats, “A High Repetition Rate Pico-Synchronous Nd:YAG Laser,” Opt. Commun. 65, 275–278 (1988).
[CrossRef]

Deeg, F. W.

Dlott, D. D.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Duling, I. N.

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz Synchronous Amplification of 85-Femtosecond Optical Pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.

Fayer, M. D.

Gabbe, D. R.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Greenfield, S. R.

Harmer, A. L.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Hilberg, R. P.

Hook, W. R.

Hopkins, J. B.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative Amplifications of Temporally Compressed Picosecond Pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

Kogelnik, H.

Li, T.

Linz, A.

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, J. E. Murray, “The Multipass Amplifier: Theory and Numerical Analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “Nd:YAG Regenerative Amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

Lui, K. C.

K. C. Lui, affiliation Quantronix Corporation; private communication.

Meirs, J. B.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Miller, R. J. D.

J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

Mourou, G.

D. Strickland, G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

I. N. Duling, T. Norris, T. Sizer, P. Bado, G. Mourou, “Kilohertz Synchronous Amplification of 85-Femtosecond Optical Pulses,” J. Opt. Soc. Am. B 2, 616–618 (1985).
[CrossRef]

I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.

Murray, J. E.

W. H. Lowdermilk, J. E. Murray, “Nd:YAG Regenerative Amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “The Multipass Amplifier: Theory and Numerical Analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[CrossRef]

Newell, V. J.

Norris, T.

Olson, R.

R. Olson, affiliation Continuum Corporation; private communication.

Postlewaite, J. C.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Reiner, C. C.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

Sceats, M. G.

J. M. Dawes, M. G. Sceats, “A High Repetition Rate Pico-Synchronous Nd:YAG Laser,” Opt. Commun. 65, 275–278 (1988).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Press, Edinburgh, 1986).

Sizer, T.

Strickland, D.

D. Strickland, G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Sweetser, J.

J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

Vanherzeele, H.

Veas, C.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative Amplifications of Temporally Compressed Picosecond Pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

Walmsley, I. A.

J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

Wang, D.

J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

Williamson, S.

I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.

Appl. Opt.

Appl. Phys. Lett.

Y. J. Chang, C. Veas, J. B. Hopkins, “Regenerative Amplifications of Temporally Compressed Picosecond Pulses at 2 kHz,” Appl. Phys. Lett. 49, 1758–1760 (1986).
[CrossRef]

IEEE J. Quantum Electron.

J. C. Postlewaite, J. B. Meirs, C. C. Reiner, D. D. Dlott, “Picosecond Nd:YAG Regenerative Amplifier with Acoustooptic Injection and Electrooptic VFET Pulse Switchout,” IEEE J. Quantum Electron. 24, 411–417 (1988).
[CrossRef]

J. Appl. Phys.

W. H. Lowdermilk, J. E. Murray, “The Multipass Amplifier: Theory and Numerical Analysis,” J. Appl. Phys. 51, 2436–2444 (1980).
[CrossRef]

W. H. Lowdermilk, J. E. Murray, “Nd:YAG Regenerative Amplifier,” J. Appl. Phys. 51, 3548–3555 (1980).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

A. L. Harmer, A. Linz, D. R. Gabbe, “Fluorescence of Nd in Lithium Yttrium Fluoride,” J. Phys. Chem. Solids 30, 1483–1491 (1969).
[CrossRef]

Opt. Commun.

D. Strickland, G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

J. M. Dawes, M. G. Sceats, “A High Repetition Rate Pico-Synchronous Nd:YAG Laser,” Opt. Commun. 65, 275–278 (1988).
[CrossRef]

Opt. Lett.

Rev. of Sci. Instrum.

P. Bado, M. Bouvier, “Multikilohertz Pockels Cell Driver,” Rev. of Sci. Instrum. 56, 1744–1745 (1985).
[CrossRef]

Other

A. E. Siegman, Lasers (University Press, Edinburgh, 1986).

J. Sweetser, I. A. Walmsley, D. Wang, P. Basseras, R. J. D. Miller, “Operation of a Nd:YLF Regenerative Amplifier at Frequencies Greater than 6 kHz,” in Conference on Lasers and Electro-Optics, Vol. 11 (Optical Society of America, Washington, DC, 1989) paper PD01.

K. C. Lui, affiliation Quantronix Corporation; private communication.

R. Olson, affiliation Continuum Corporation; private communication.

I. N. Duling, P. Bado, S. Williamson, G. Mourou, T. Baer, “A Stable Kilohertz Nd:YAG Regenerative Amplifier,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1984), paper PD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the regenerative amplifier system. M1 and M2 are concave and convex resonator mirrors, PC Pockels cell, L cylindrical lens, A mode selector, P1 and P2 Brewster angle polarizers, WP1 half-wave plate, WP2 quarter-wave plate, BS1 and BS2 5% beam splitters, FR Faraday rotator, BD beam dump and R high reflectors. The e−2 diameters in mm are indicated at various positions (the positions in cm are in parenthesis) in the amplifier. The value of the positions are measured relative to mirror M1. The value for the beam diameters are for a cavity length which gives a 12-ns round-trip time. See text for details.

Fig. 2
Fig. 2

Fast photodiode output from <1% resonator leakage through mirror M1 during regenerative amplifier operation excluding cavity dumping. Each successive peak is the single trapped pulse changing in amplitude as it returns to mirror M1. The separation between peaks is 10.5 ns, the round-trip time in the amplifier’s resonator. The temporal envelope is the Q-switch pulse buildup and decay curve.

Fig. 3
Fig. 3

Fast photodiode output during regenerative amplifier operation including cavity dumping. Trace a is output from same photodiode as in Fig. 2 and trace b is photodiode output of amplifier output. Note that at the time of cavity dumping all the energy is extracted from the cavity (trace a) and emerges as a single pulse (trace b).

Fig. 4
Fig. 4

Energy per pulse and average power output of the regenerative amplifier as a function of repetition rate. The open circles are the measured energy/pulse and the solid circles are the average power.

Fig. 5
Fig. 5

One-dimensional slice of the amplifier’s output beam profile taken 6 m from the laser with a CCD camera. The open circles are the digitized output of the camera and the solid line is the result of a nonlinear fit to a TEM00 mode distribution. The result of the fit is consistent across the 2-D distribution.

Fig. 6
Fig. 6

Regenerative amplifier’s output with vertical scale expanded taken with a fast photodiode. Label A is the amplifier’s main pulse (off scale) and labels B and C are secondary pulses; see text for description.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T b 25 r - 1 × T δ c ,

Metrics