Abstract

We describe an efficient Raman shifted dye laser system that generates tunable radiation at 765 and 940 nm with a bandwidth of 0.03 cm−1. Operating a Raman cell at hydrogen pressure below 14 atm, we recorded optimum first Stokes energy conversions of 45% and of 37% at 765 and 940 nm, respectively. Optical depth measurements made at the centers of twenty-five absorption lines in the P branch of the oxygen A band imply a high spectral purity for both the laser and the Raman shifted radiation, and thus indicate the feasibility of using the stimulated Raman scattered radiation for differential absorption lidar (DIAL) measurements.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
    [CrossRef] [PubMed]
  2. C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
    [CrossRef]
  3. E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.
  4. T. D. Wilkerson, G. K. Schwemmer, “Lidar Techniques for Humidity and Temperature Measurement,” Opt. Eng. 21, 1022–1024 (1982).
    [CrossRef]
  5. C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
    [CrossRef]
  6. C. L. Korb, C. Y. Weng, “Differential Absorption Lidar Technique for Measurement of the Atmospheric Pressure Profile,” Appl. Opt. 22, 3759–3770 (1983).
    [CrossRef] [PubMed]
  7. T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).
  8. T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).
  9. L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
    [CrossRef]
  10. E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” Proc. ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland (1984).
  11. C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
    [CrossRef]
  12. J. R. Murray, A. Javan, “Effects of Collisionson Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
    [CrossRef]
  13. W. H. Lowdermilk, G. I. Kachen, “Spatial and Temporal Intensity Distribution of Stimulated Raman Emission,” J. Appl. Phys. 50, 3871–3878 (1979).
    [CrossRef]
  14. B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
    [CrossRef]
  15. U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).
  16. B. N. Perry, P. Robinowitz, D. S. Bomse, “Stimulated Raman Scattering with a Tightly Focused Pump,” Opt. Lett. 10, 146–148 (1985).
    [CrossRef] [PubMed]
  17. E. W. Washburn, Ed., International Critical Tables of Numerical Data (McGraw-Hill, New York), 7, 11 (1930).
  18. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
    [CrossRef]
  19. K. J. Ritter, “A High Resolution Spectroscopic Study of Absorption Line Profiles in the A-Band of Molecular Oxygen,” Ph.D Dissertation, U of Maryland (1986).
  20. K. J. Ritter, T. D. Wilkerson, “High Resolution Spectroscopy of the Oxygen A Band,” J. of Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  21. L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).
  22. P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed Injection Control of a Titanium-Doped Sapphire Laser,” Opt. Lett. 11, 712–714 (1986).
    [CrossRef] [PubMed]

1988

L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).

1987

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High Resolution Spectroscopy of the Oxygen A Band,” J. of Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

1986

1985

1983

1982

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, “Lidar Techniques for Humidity and Temperature Measurement,” Opt. Eng. 21, 1022–1024 (1982).
[CrossRef]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

1981

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

1979

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

W. H. Lowdermilk, G. I. Kachen, “Spatial and Temporal Intensity Distribution of Stimulated Raman Emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

1972

J. R. Murray, A. Javan, “Effects of Collisionson Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

Bair, C. H.

Barnes, J. C.

Bomse, D. S.

Brockman, P.

Browell, E. V.

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, “Pulsed Injection Control of a Titanium-Doped Sapphire Laser,” Opt. Lett. 11, 712–714 (1986).
[CrossRef] [PubMed]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.

E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” Proc. ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland (1984).

Cahen, C.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Chu, Z.

U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).

Cotnoir, L. J.

L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).

Dombrowski, M.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Flamant, P.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

Gentry, B.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

Giver, L. P.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

Goroch, A. K.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.

Grossman, B. E.

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

Hess, R. V.

Higdon, N. S.

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

Ismail, S.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.

E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” Proc. ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland (1984).

Javan, A.

J. R. Murray, A. Javan, “Effects of Collisionson Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

Kachen, G. I.

W. H. Lowdermilk, G. I. Kachen, “Spatial and Temporal Intensity Distribution of Stimulated Raman Emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

Kagann, R.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Korb, C. L.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

C. L. Korb, C. Y. Weng, “Differential Absorption Lidar Technique for Measurement of the Atmospheric Pressure Profile,” Appl. Opt. 22, 3759–3770 (1983).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Laufer, P. M.

L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).

Lowdermilk, W. H.

W. H. Lowdermilk, G. I. Kachen, “Spatial and Temporal Intensity Distribution of Stimulated Raman Emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

Mahon, R.

T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).

U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).

Markson, R.

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.

McIlrath, T. J.

McKay, J. A.

L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).

Megie, G.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Murray, J. R.

J. R. Murray, A. Javan, “Effects of Collisionson Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

Perry, B. N.

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High Resolution Spectroscopy of the Oxygen A Band,” J. of Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

K. J. Ritter, “A High Resolution Spectroscopic Study of Absorption Line Profiles in the A-Band of Molecular Oxygen,” Ph.D Dissertation, U of Maryland (1986).

T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).

Robinowitz, P.

Schwemmer, G.

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

Schwemmer, G. K.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, “Lidar Techniques for Humidity and Temperature Measurement,” Opt. Eng. 21, 1022–1024 (1982).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).

T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).

Singh, U. N.

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).

T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).

T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Weng, C. Y.

C. L. Korb, C. Y. Weng, “Differential Absorption Lidar Technique for Measurement of the Atmospheric Pressure Profile,” Appl. Opt. 22, 3759–3770 (1983).
[CrossRef] [PubMed]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

Wilkerson, T. D.

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High Resolution Spectroscopy of the Oxygen A Band,” J. of Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

T. D. Wilkerson, G. K. Schwemmer, “Lidar Techniques for Humidity and Temperature Measurement,” Opt. Eng. 21, 1022–1024 (1982).
[CrossRef]

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979).
[CrossRef] [PubMed]

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.

T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).

T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).

U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).

Appl. Opt.

Appl. Optics

B. E. Grossman, U. N. Singh, N. S. Higdon, L. J. Cotnoir, T. D. Wilkerson, E. V. Browell, “Raman-Shifted Dye Laser for Water Vapor DIAL Measurements,” Appl. Optics 26, 1617–1621 (1987).
[CrossRef]

J. Appl. Meteorol.

C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of the Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982).
[CrossRef]

C. L. Korb, C. Y. Weng, “A Theoretical Study of a Two-Wavelength Lidar Technique for the Measurement of Atmospheric Temperature Profiles,” J. Appl. Meteorol. 21, 1346–1355 (1982).
[CrossRef]

J. Appl. Phys.

W. H. Lowdermilk, G. I. Kachen, “Spatial and Temporal Intensity Distribution of Stimulated Raman Emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

J. Mol. Spectrosc.

J. R. Murray, A. Javan, “Effects of Collisionson Raman Line Profiles of Hydrogen and Deuterium Gas,” J. Mol. Spectrosc. 42, 1–26 (1972).
[CrossRef]

J. of Mol. Spectrosc.

K. J. Ritter, T. D. Wilkerson, “High Resolution Spectroscopy of the Oxygen A Band,” J. of Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981).
[CrossRef]

L. P. Giver, B. Gentry, G. Schwemmer, T. D. Wilkerson, “Water Absorption Lines 931–961 nm: Selected Intensities, N2 Collision-Broadening Coefficients, Self-Broadening Coefficients, and Pressure Shifts in Air,” J. Quant. Spectrosc. Radiat. Transfer 27, 423–436 (1982).
[CrossRef]

Opt. Eng.

T. D. Wilkerson, G. K. Schwemmer, “Lidar Techniques for Humidity and Temperature Measurement,” Opt. Eng. 21, 1022–1024 (1982).
[CrossRef]

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

L. J. Cotnoir, J. A. McKay, P. M. Laufer, “Integrated Spectrum Analyzer/Wavemeter for Pulsed, Tunable Lasers,” Proc. Soc. Photo-Opt. Instrum. Eng. 889, 108–113 (1988).

Rev. of Sci. Instrum.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, R. Kagann, “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. of Sci. Instrum. 58, 2226–2237 (1987).
[CrossRef]

Other

K. J. Ritter, “A High Resolution Spectroscopic Study of Absorption Line Profiles in the A-Band of Molecular Oxygen,” Ph.D Dissertation, U of Maryland (1986).

E. W. Washburn, Ed., International Critical Tables of Numerical Data (McGraw-Hill, New York), 7, 11 (1930).

U. N. Singh, Z. Chu, R. Mahon, T. D. Wilkerson, “Optimization of a Raman-Shifted Dye Laser System for DIAL Applications,” in Proceedings 14th Internat. Laser Radar Conf.San Candido, Italy (1988).

E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor Measurements over the Gulf Stream,” in Proceedings Twelfth International Laser Radar Conf., (Aix-en-Provence, France, 1984) p. 151.

E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” Proc. ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland (1984).

T. D. Wilkerson, G. K. Schwemmer, L. J. Cotnoir, U. N. Singh, “On the Measurement of Atmospheric Density Using DIAL in the O2A Band (770 nm),” in Proceedings 13th Internat. Laser Radar Conf., Toronto, Canada (1986).

T. D. Wilkerson, G. K. Schwemmer, K. J. Ritter, U. N. Singh, R. Mahon, “Applications of Laser and Lidar Spectroscopy to Meteorological Remote Sensing,” Laser Spectroscopy VIIIW. Persson, S. Svanberg, Eds. (Springer-Verlag, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experiment for generating the first Stokes at 765 nm using a dye laser pump at 580 nm. The first Stokes at 940 nm was generated in like manner from a 676 nm pump using appropriate dichroics. The multipass White cell is indicated, and A and B designate the pyroelectric energy probes used to ratio the transmitted to incident energies.

Fig. 2
Fig. 2

Energy conversion efficiency as a function of pressure when generating the first Stokes at 765 nm in (a) and at 940 nm in (b). The pump beam was focused into the center of the Raman cell with lenses having focal lengths of: 2 m; 1.5 m; 1 m; and 0.5 m. A constant pump energy of 29 mJ at 580 nm was used in (a) while a pump energy of 25 mJ at 676 nm was used in (b).

Fig. 3
Fig. 3

First Stokes energies at both 765 nm and at 940 nm as a function of pump energy for two pump geometries and a hydrogen cell pressure of 14 atm.

Fig. 4
Fig. 4

Conversion efficiency for the 940-nm first Stokes radiation generated in the backward direction as a function of hydrogen pressure for two pump geometries.

Fig. 5
Fig. 5

Optical depths of lines in the A-band of molecular oxygen, as measured using the 760–770 nm dye laser radiation, compared with the calculated optical depth for the dye laser linewidth of 0.02 cm−1 with a frequency stability of 0.007 cm−1.

Fig. 6
Fig. 6

Optical depths of lines in the A-band of molecular oxygen, as measured using the 760–770 nm Raman shifted dye laser radiation, compared with the calculated optical depth for the dye laser linewidth of 0.03 cm−1 with a frequency stability of 0.007 cm−1.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ 0 = - F n ( ( B / A ) min ( B / A ) max ) ,
τ 0 = - F n [ ( B / A ) min , δ + ( B / A ASE ) ( B / A ) max , δ + ( B / A ASE ) ] ,
τ 0 = - F n [ ( B / A ) min ( B / A ) max + ( B / A ASE ) ( B / A ASE ) ] .
τ j = - F n ( T j / B j )
T j = ( B / A ) min ( B / A ) max
τ ˜ 0 = - F n - + G ( ν - ν 0 ) exp [ - τ ( ν - ν 0 ) ] d ( ν - ν 0 ) ,
τ ( ν - ν 0 ) = S 0 L n V ( ν - ν 0 ) ,
τ ˜ 0 = - F n - + G ( ν - ν 0 ) exp [ - S 0 L n V ( ν - ν 0 ) ] d ( ν - ν 0 ) .

Metrics