Abstract

A two-color laser beam separated by 587 cm−1 is focused into a Raman cell pressurized with hydrogen. More than fifty rotational and vibrational lines are generated by a four-wave mixing-assisted stimulated Raman effect. By synchronously changing the laser frequencies, the overall tuning range is extended from the deep ultraviolet (247 nm) to the near infrared (771 nm) without any frequency gaps.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
    [CrossRef]
  2. W. R. Bosenberg, L. K. Cheng, C. L. Tang, “Ultraviolet Optical Parametric Oscillation in β-BaB2O4,” Appl. Phys. Lett. 54, 13–15 (1989).
    [CrossRef]
  3. V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
    [CrossRef]
  4. W. Hartig, W. Schmidt, “A Broadly Tunable IR Waveguide Raman Laser Pumped by a Dye Laser,” Appl. Phys. 18, 235–241 (1979).
    [CrossRef]
  5. S. Kawasaki, T. Imasaka, N. Ishibashi, “Widely Tunable Laser System Using Single Dye Solution Based on the Stimulated Raman Effect,” Opt. Commun. 66, 285–288 (1988).
    [CrossRef]
  6. J. C. Walling, “Tunable Paramagnetic-Ion Solid-State Lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, Eds. (Springer-Verlag, New York, 1987), p. 392.
  7. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated Pure Rotational Raman Scattering in Deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
    [CrossRef]
  8. H. F. Dobele, M. Horl, M. Rowekamp, “Tuning Ranges of KrF and ArF Excimer Laser Amplifiers and of Associated Vacuum Ultraviolet Anti-Stokes Raman Lines,” Appl. Phys. B 42, 67–72 (1987).
    [CrossRef]
  9. T. Imasaka, S. Kawasaki, N. Ishibashi, “Generation of More Than 40 Laser Emission Lines from the Ultraviolet to the Visible Regions by Two-Color Stimulated Raman Effect,” Appl. Phys. B 49, 389–392 (1989).
    [CrossRef]
  10. P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
    [CrossRef]
  11. D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979), pp. 93 and 107.

1989 (2)

W. R. Bosenberg, L. K. Cheng, C. L. Tang, “Ultraviolet Optical Parametric Oscillation in β-BaB2O4,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

T. Imasaka, S. Kawasaki, N. Ishibashi, “Generation of More Than 40 Laser Emission Lines from the Ultraviolet to the Visible Regions by Two-Color Stimulated Raman Effect,” Appl. Phys. B 49, 389–392 (1989).
[CrossRef]

1988 (2)

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

S. Kawasaki, T. Imasaka, N. Ishibashi, “Widely Tunable Laser System Using Single Dye Solution Based on the Stimulated Raman Effect,” Opt. Commun. 66, 285–288 (1988).
[CrossRef]

1987 (1)

H. F. Dobele, M. Horl, M. Rowekamp, “Tuning Ranges of KrF and ArF Excimer Laser Amplifiers and of Associated Vacuum Ultraviolet Anti-Stokes Raman Lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

1986 (1)

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[CrossRef]

1979 (2)

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

W. Hartig, W. Schmidt, “A Broadly Tunable IR Waveguide Raman Laser Pumped by a Dye Laser,” Appl. Phys. 18, 235–241 (1979).
[CrossRef]

1966 (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated Pure Rotational Raman Scattering in Deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg, L. K. Cheng, C. L. Tang, “Ultraviolet Optical Parametric Oscillation in β-BaB2O4,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

Byer, R. L.

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

Cheng, L. K.

W. R. Bosenberg, L. K. Cheng, C. L. Tang, “Ultraviolet Optical Parametric Oscillation in β-BaB2O4,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

Cotter, D.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979), pp. 93 and 107.

Dobele, H. F.

H. F. Dobele, M. Horl, M. Rowekamp, “Tuning Ranges of KrF and ArF Excimer Laser Amplifiers and of Associated Vacuum Ultraviolet Anti-Stokes Raman Lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Eckardt, R. C.

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

Fan, Y. X.

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated Pure Rotational Raman Scattering in Deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Hanna, D. C.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979), pp. 93 and 107.

Hartig, W.

W. Hartig, W. Schmidt, “A Broadly Tunable IR Waveguide Raman Laser Pumped by a Dye Laser,” Appl. Phys. 18, 235–241 (1979).
[CrossRef]

Horl, M.

H. F. Dobele, M. Horl, M. Rowekamp, “Tuning Ranges of KrF and ArF Excimer Laser Amplifiers and of Associated Vacuum Ultraviolet Anti-Stokes Raman Lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Imasaka, T.

T. Imasaka, S. Kawasaki, N. Ishibashi, “Generation of More Than 40 Laser Emission Lines from the Ultraviolet to the Visible Regions by Two-Color Stimulated Raman Effect,” Appl. Phys. B 49, 389–392 (1989).
[CrossRef]

S. Kawasaki, T. Imasaka, N. Ishibashi, “Widely Tunable Laser System Using Single Dye Solution Based on the Stimulated Raman Effect,” Opt. Commun. 66, 285–288 (1988).
[CrossRef]

Ishibashi, N.

T. Imasaka, S. Kawasaki, N. Ishibashi, “Generation of More Than 40 Laser Emission Lines from the Ultraviolet to the Visible Regions by Two-Color Stimulated Raman Effect,” Appl. Phys. B 49, 389–392 (1989).
[CrossRef]

S. Kawasaki, T. Imasaka, N. Ishibashi, “Widely Tunable Laser System Using Single Dye Solution Based on the Stimulated Raman Effect,” Opt. Commun. 66, 285–288 (1988).
[CrossRef]

Kawasaki, S.

T. Imasaka, S. Kawasaki, N. Ishibashi, “Generation of More Than 40 Laser Emission Lines from the Ultraviolet to the Visible Regions by Two-Color Stimulated Raman Effect,” Appl. Phys. B 49, 389–392 (1989).
[CrossRef]

S. Kawasaki, T. Imasaka, N. Ishibashi, “Widely Tunable Laser System Using Single Dye Solution Based on the Stimulated Raman Effect,” Opt. Commun. 66, 285–288 (1988).
[CrossRef]

Levinos, N.

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[CrossRef]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated Pure Rotational Raman Scattering in Deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Nolting, J.

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

Perry, B. N.

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[CrossRef]

Rabinowitz, P.

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[CrossRef]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated Pure Rotational Raman Scattering in Deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Rowekamp, M.

H. F. Dobele, M. Horl, M. Rowekamp, “Tuning Ranges of KrF and ArF Excimer Laser Amplifiers and of Associated Vacuum Ultraviolet Anti-Stokes Raman Lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

Schmidt, W.

W. Hartig, W. Schmidt, “A Broadly Tunable IR Waveguide Raman Laser Pumped by a Dye Laser,” Appl. Phys. 18, 235–241 (1979).
[CrossRef]

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

Tang, C. L.

W. R. Bosenberg, L. K. Cheng, C. L. Tang, “Ultraviolet Optical Parametric Oscillation in β-BaB2O4,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

Wallenstein, R.

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

Walling, J. C.

J. C. Walling, “Tunable Paramagnetic-Ion Solid-State Lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, Eds. (Springer-Verlag, New York, 1987), p. 392.

Wilke, V.

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

Yuratich, M. A.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979), pp. 93 and 107.

Appl. Phys. (2)

V. Wilke, W. Schmidt, “Tunable Coherent Radiation Source Covering a Spectral Range from 185 to 880 nm,” Appl. Phys. 18, 177–181 (1979).
[CrossRef]

W. Hartig, W. Schmidt, “A Broadly Tunable IR Waveguide Raman Laser Pumped by a Dye Laser,” Appl. Phys. 18, 235–241 (1979).
[CrossRef]

Appl. Phys. B (2)

H. F. Dobele, M. Horl, M. Rowekamp, “Tuning Ranges of KrF and ArF Excimer Laser Amplifiers and of Associated Vacuum Ultraviolet Anti-Stokes Raman Lines,” Appl. Phys. B 42, 67–72 (1987).
[CrossRef]

T. Imasaka, S. Kawasaki, N. Ishibashi, “Generation of More Than 40 Laser Emission Lines from the Ultraviolet to the Visible Regions by Two-Color Stimulated Raman Effect,” Appl. Phys. B 49, 389–392 (1989).
[CrossRef]

Appl. Phys. Lett. (2)

Y. X. Fan, R. C. Eckardt, R. L. Byer, J. Nolting, R. Wallenstein, “Visible BaB2O4 Optical Parametric Oscillator Pumped at 355 nm by a Single-Axial-Mode Pulsed Source,” Appl. Phys. Lett. 53, 2014–2016 (1988).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, C. L. Tang, “Ultraviolet Optical Parametric Oscillation in β-BaB2O4,” Appl. Phys. Lett. 54, 13–15 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Rabinowitz, B. N. Perry, N. Levinos, “A Continuously Tunable Sequential Stokes Raman Laser,” IEEE J. Quantum Electron. QE-22, 797–801 (1986).
[CrossRef]

Opt. Commun. (1)

S. Kawasaki, T. Imasaka, N. Ishibashi, “Widely Tunable Laser System Using Single Dye Solution Based on the Stimulated Raman Effect,” Opt. Commun. 66, 285–288 (1988).
[CrossRef]

Phys. Rev. Lett. (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated Pure Rotational Raman Scattering in Deuterium,” Phys. Rev. Lett. 17, 229–231 (1966).
[CrossRef]

Other (2)

J. C. Walling, “Tunable Paramagnetic-Ion Solid-State Lasers,” in Tunable Lasers, L. F. Mollenauer, J. C. White, Eds. (Springer-Verlag, New York, 1987), p. 392.

D. C. Hanna, M. A. Yuratich, D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979), pp. 93 and 107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental apparatus for simultaneous generation of rotational and vibrational stimulated Raman emission.

Fig. 2
Fig. 2

Spectrum of laser emission generated by the FWM-assisted stimulated Raman effect.

Fig. 3
Fig. 3

Tunable range of FWM-assisted stimulated Raman emission. Each curve is constructed by a combination of the tuning ranges for respective rotational lines: F, fundamental; S, Stokes; AS, anti-Stokes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω m n = ( ω 1 + m ω H ) + n ( ω 1 - ω 2 ) ,

Metrics