Abstract

The geometric rotation of polarization in single-mode optical fibers is investigated theoretically and experimentally. The measurement results are reported for polarization rotation due to geometric path variance of single-mode fibers with the input and output ends of fibers being nonparallel.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers Due to Geometric Effects,” Opt. Quantum Electron. 16, 455–461 (1984).
    [CrossRef]
  2. M.P. Varnham, R.D. Birch, D.N. Payne, “Helical-Core Circularly-BirefringentFibres,” in Technical Digest, Fifth International Conference onIntegrated Optics and Optical Fiber Communication/Eleventh European Conference on OpticalCommunication, Venice (1985), p. 135.
  3. R. Y. Chiao, Y. S. Wu, “Manifestations of Berry’s Topological Phase for the Photon,” Phys. Rev. Lett. 57, 933–936 (1986).
    [CrossRef] [PubMed]
  4. A. Tomita, R. Y. Chiao, “Observation of Berry’s Topological Phase by Use of an Optical Fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
    [CrossRef] [PubMed]
  5. F. D. M. Haldane, “Path Dependence of the Geometric Rotation of Polarization in Optical Fibers,” Opt. Lett. 11, 730–732 (1986).
    [CrossRef] [PubMed]

1986 (3)

R. Y. Chiao, Y. S. Wu, “Manifestations of Berry’s Topological Phase for the Photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[CrossRef] [PubMed]

A. Tomita, R. Y. Chiao, “Observation of Berry’s Topological Phase by Use of an Optical Fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[CrossRef] [PubMed]

F. D. M. Haldane, “Path Dependence of the Geometric Rotation of Polarization in Optical Fibers,” Opt. Lett. 11, 730–732 (1986).
[CrossRef] [PubMed]

1984 (1)

J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers Due to Geometric Effects,” Opt. Quantum Electron. 16, 455–461 (1984).
[CrossRef]

Birch, R.D.

M.P. Varnham, R.D. Birch, D.N. Payne, “Helical-Core Circularly-BirefringentFibres,” in Technical Digest, Fifth International Conference onIntegrated Optics and Optical Fiber Communication/Eleventh European Conference on OpticalCommunication, Venice (1985), p. 135.

Chiao, R. Y.

R. Y. Chiao, Y. S. Wu, “Manifestations of Berry’s Topological Phase for the Photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[CrossRef] [PubMed]

A. Tomita, R. Y. Chiao, “Observation of Berry’s Topological Phase by Use of an Optical Fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[CrossRef] [PubMed]

Haldane, F. D. M.

Payne, D.N.

M.P. Varnham, R.D. Birch, D.N. Payne, “Helical-Core Circularly-BirefringentFibres,” in Technical Digest, Fifth International Conference onIntegrated Optics and Optical Fiber Communication/Eleventh European Conference on OpticalCommunication, Venice (1985), p. 135.

Ross, J. N.

J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers Due to Geometric Effects,” Opt. Quantum Electron. 16, 455–461 (1984).
[CrossRef]

Tomita, A.

A. Tomita, R. Y. Chiao, “Observation of Berry’s Topological Phase by Use of an Optical Fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[CrossRef] [PubMed]

Varnham, M.P.

M.P. Varnham, R.D. Birch, D.N. Payne, “Helical-Core Circularly-BirefringentFibres,” in Technical Digest, Fifth International Conference onIntegrated Optics and Optical Fiber Communication/Eleventh European Conference on OpticalCommunication, Venice (1985), p. 135.

Wu, Y. S.

R. Y. Chiao, Y. S. Wu, “Manifestations of Berry’s Topological Phase for the Photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. N. Ross, “The Rotation of the Polarization in Low Birefringence Monomode Optical Fibers Due to Geometric Effects,” Opt. Quantum Electron. 16, 455–461 (1984).
[CrossRef]

Phys. Rev. Lett. (2)

R. Y. Chiao, Y. S. Wu, “Manifestations of Berry’s Topological Phase for the Photon,” Phys. Rev. Lett. 57, 933–936 (1986).
[CrossRef] [PubMed]

A. Tomita, R. Y. Chiao, “Observation of Berry’s Topological Phase by Use of an Optical Fiber,” Phys. Rev. Lett. 57, 937–940 (1986).
[CrossRef] [PubMed]

Other (1)

M.P. Varnham, R.D. Birch, D.N. Payne, “Helical-Core Circularly-BirefringentFibres,” in Technical Digest, Fifth International Conference onIntegrated Optics and Optical Fiber Communication/Eleventh European Conference on OpticalCommunication, Venice (1985), p. 135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spherical surface in K space: K0, the K vector on the input end and K1, the K vector on the output end.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Rotation angle of polarization with various fiber configurations: solid line, theoretical prediction; ●, measured for arbitrary plane curves; ○, measured for uniform helices; ■, measured for nonuniform helices; △, measured for the nonparallel case (a segment of uniform helices).

Tables (1)

Tables Icon

Table I Polarization rotation for nonparallel casea

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ = - input end output end τ d s .
S = ( σ ) d σ α s ( n ^ , z ^ ) = ( σ ) 1 + p 2 + q 2 d x d y = ( σ ) 1 + p 2 + q 2 r d r d φ .
O E = r · cos ( α 2 ) , O F = O E / cos ( φ - α 2 ) .
O O A = arctan ( O F / O O ) = arctan [ r cos α / 2 cos ( φ - α 2 ) 1 - r 2 ] , O B = O F + F B = O F · sin ( O O A ) + A F · sin ( O O A ) = sin ( O O A ) .
( σ ) R 1 - R 2 d R d φ = α 2 π d φ 0 r R 1 - R 2 d R + 0 α d φ 0 0 B R d R 1 - R 2 = ( 2 π - α ) ( 1 - 1 - r 2 ) + 0 α d φ 0 sin ( 0 0 A ) R d R 1 - R 2 ,

Metrics