Abstract

Continuous wave single-longitudinal-mode power of 58 mW and frequency tuning of ~1 THz has been obtained near 2.1 μm using a diode laser pumped thermoelectrically cooled Tm:Ho:YAG laser.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Huber, E. W. Duczynski, K. Petermann, “Laser Pumping of Ho-, Tm-, Er-Doped Garnet Lasers at Room Temperature,” IEEE J. Quantum Electron. QE-24, 920–923 (1988).
    [CrossRef]
  2. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of a Diode-Laser-Pumped, Tm-Sensitized Ho:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
    [CrossRef] [PubMed]
  3. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
    [CrossRef]
  4. G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-WaveLaser Emission at 2.02 μm from Diode-Pumped Tm3+:YAG at Room Temperature,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB2.
  5. T. J. Kane, R. W. Wallace, “Performance of a Diode-Pumped Tm:Ho:YAG Laser at Temperatures Between −55 and +20°C,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB3.
  6. T. Y. Fan, R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  7. W. P. Risk, “Modeling of Longitudinally Pumped Solid-State Lasers Exhibiting Reabsorption Losses,” J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]

1988

G. Huber, E. W. Duczynski, K. Petermann, “Laser Pumping of Ho-, Tm-, Er-Doped Garnet Lasers at Room Temperature,” IEEE J. Quantum Electron. QE-24, 920–923 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
[CrossRef]

W. P. Risk, “Modeling of Longitudinally Pumped Solid-State Lasers Exhibiting Reabsorption Losses,” J. Opt. Soc. Am. B 5, 1412 (1988).
[CrossRef]

1987

T. Y. Fan, R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of a Diode-Laser-Pumped, Tm-Sensitized Ho:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Allen, R.

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-WaveLaser Emission at 2.02 μm from Diode-Pumped Tm3+:YAG at Room Temperature,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB2.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of a Diode-Laser-Pumped, Tm-Sensitized Ho:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

T. Y. Fan, R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Duczynski, E. W.

G. Huber, E. W. Duczynski, K. Petermann, “Laser Pumping of Ho-, Tm-, Er-Doped Garnet Lasers at Room Temperature,” IEEE J. Quantum Electron. QE-24, 920–923 (1988).
[CrossRef]

Esterowitz, L.

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-WaveLaser Emission at 2.02 μm from Diode-Pumped Tm3+:YAG at Room Temperature,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB2.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of a Diode-Laser-Pumped, Tm-Sensitized Ho:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

T. Y. Fan, R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
[CrossRef]

G. Huber, E. W. Duczynski, K. Petermann, “Laser Pumping of Ho-, Tm-, Er-Doped Garnet Lasers at Room Temperature,” IEEE J. Quantum Electron. QE-24, 920–923 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of a Diode-Laser-Pumped, Tm-Sensitized Ho:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Kane, T. J.

T. J. Kane, R. W. Wallace, “Performance of a Diode-Pumped Tm:Ho:YAG Laser at Temperatures Between −55 and +20°C,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB3.

Kintz, G. J.

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-WaveLaser Emission at 2.02 μm from Diode-Pumped Tm3+:YAG at Room Temperature,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB2.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Continuous-Wave Operation at 2.1 μm of a Diode-Laser-Pumped, Tm-Sensitized Ho:Y3Al5O12 Laser at 300 K,” Opt. Lett. 12, 678–680 (1987).
[CrossRef] [PubMed]

Petermann, K.

G. Huber, E. W. Duczynski, K. Petermann, “Laser Pumping of Ho-, Tm-, Er-Doped Garnet Lasers at Room Temperature,” IEEE J. Quantum Electron. QE-24, 920–923 (1988).
[CrossRef]

Risk, W. P.

Wallace, R. W.

T. J. Kane, R. W. Wallace, “Performance of a Diode-Pumped Tm:Ho:YAG Laser at Temperatures Between −55 and +20°C,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB3.

IEEE J. Quantum Electron.

G. Huber, E. W. Duczynski, K. Petermann, “Laser Pumping of Ho-, Tm-, Er-Doped Garnet Lasers at Room Temperature,” IEEE J. Quantum Electron. QE-24, 920–923 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzscherlich, “Spectroscopy and Diode Laser-Pumped Operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
[CrossRef]

T. Y. Fan, R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).

J. Opt. Soc. Am. B

Opt. Lett.

Other

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-WaveLaser Emission at 2.02 μm from Diode-Pumped Tm3+:YAG at Room Temperature,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB2.

T. J. Kane, R. W. Wallace, “Performance of a Diode-Pumped Tm:Ho:YAG Laser at Temperatures Between −55 and +20°C,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1988), paper FB3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the diode laser pumped Tm:Ho:YAG oscillator.

Fig. 2
Fig. 2

Laser output power near 2100nm vs diode laser pump power near 785 nm incident on rear cavity mirror M1.

Fig. 3
Fig. 3

Output power vs wavelength obtained by tilt tuning the 0.09-mm thick intracavity etalon E2 and with the 1.0-mm thick intracavity etalon E1 removed from the cavity.

Fig. 4
Fig. 4

Spectrum of the single-longitudinal-mode Tm:Ho:YAG laser. (A) The spectrum as measured using a scanning Fabry-Perot interferometer. The peaks are separated by the 15-GHz free spectral range of the interferometer and the linewidth is due to instrument resolution. (B) The spectrum as measured with a scanning confocal interferometer whose free spectral range is 300 MHz. The linewidth is again due to instrument resolution.

Metrics