Abstract

Strong periodic structures have been observed in the spectrum of a broadband transversely pumped pulsed dye laser which does not contain, prima facie, any optical interference element.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schafer, Ed., Dye Lasers (Springer-Verlag, New York, 1973).
    [CrossRef]
  2. R. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye Laser Amplified Absorption Spectroscopy In Flames,” J. Chem. Phys. 55, 4659–4660 (1971).
    [CrossRef]
  3. F. J. Morgan, C. H. Dugan, A. G. Lee, “Laser Intracavity Absorption: A Numerical And Experimental Study With A Pulsed Dye Laser,” Opt. Commun. 27, 451–454 (1978).
    [CrossRef]
  4. W. G. Divens, M. E. Starzak, “Intracavity Enhancement Of Absorption In The Nanosecond Regime,” Opt. Commun. 26, 186–188 (1978).
    [CrossRef]
  5. P. E. Toschek, V. M. Baev, “One Is Not Enough: IntraCavity Spectroscopy with Multimode Lasers,” in Lasers, Spectroscopy and New Ideas: a Tribute to Arthur L. Schawlow, W. M. Yen, M. D. Levenson, Eds. (Springer-Verlag, Berlin, 1987), pp. 89–111.
  6. V. M. Baev, K. J. Boller, P. E. Toschek, “Polarisation-Dependent Interference of Two-Photon Absorption In A Broad-Band Laser,” Opt. Commun. 66, 225–230 (1988).
    [CrossRef]
  7. E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
    [CrossRef]
  8. W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
    [CrossRef]
  9. A. C. Eckbreth, “CARS Applications to Combustion Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng. 621, 116–000 (1986).
  10. R. Kolos, J. Sepiol, “Novel Nanosecond Spectral Continuum Source-High Intensity Mode-Less Amplified Spontaneous Emission,” Opt. Commun. 69, 308–310 (1989).
    [CrossRef]

1989 (1)

R. Kolos, J. Sepiol, “Novel Nanosecond Spectral Continuum Source-High Intensity Mode-Less Amplified Spontaneous Emission,” Opt. Commun. 69, 308–310 (1989).
[CrossRef]

1988 (1)

V. M. Baev, K. J. Boller, P. E. Toschek, “Polarisation-Dependent Interference of Two-Photon Absorption In A Broad-Band Laser,” Opt. Commun. 66, 225–230 (1988).
[CrossRef]

1986 (1)

A. C. Eckbreth, “CARS Applications to Combustion Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng. 621, 116–000 (1986).

1982 (1)

E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

1978 (2)

F. J. Morgan, C. H. Dugan, A. G. Lee, “Laser Intracavity Absorption: A Numerical And Experimental Study With A Pulsed Dye Laser,” Opt. Commun. 27, 451–454 (1978).
[CrossRef]

W. G. Divens, M. E. Starzak, “Intracavity Enhancement Of Absorption In The Nanosecond Regime,” Opt. Commun. 26, 186–188 (1978).
[CrossRef]

1976 (1)

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

1971 (1)

R. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye Laser Amplified Absorption Spectroscopy In Flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Antonov, E. N.

E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Antsyferov, P. S.

E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Baev, V. M.

V. M. Baev, K. J. Boller, P. E. Toschek, “Polarisation-Dependent Interference of Two-Photon Absorption In A Broad-Band Laser,” Opt. Commun. 66, 225–230 (1988).
[CrossRef]

P. E. Toschek, V. M. Baev, “One Is Not Enough: IntraCavity Spectroscopy with Multimode Lasers,” in Lasers, Spectroscopy and New Ideas: a Tribute to Arthur L. Schawlow, W. M. Yen, M. D. Levenson, Eds. (Springer-Verlag, Berlin, 1987), pp. 89–111.

Boller, K. J.

V. M. Baev, K. J. Boller, P. E. Toschek, “Polarisation-Dependent Interference of Two-Photon Absorption In A Broad-Band Laser,” Opt. Commun. 66, 225–230 (1988).
[CrossRef]

Divens, W. G.

W. G. Divens, M. E. Starzak, “Intracavity Enhancement Of Absorption In The Nanosecond Regime,” Opt. Commun. 26, 186–188 (1978).
[CrossRef]

Dugan, C. H.

F. J. Morgan, C. H. Dugan, A. G. Lee, “Laser Intracavity Absorption: A Numerical And Experimental Study With A Pulsed Dye Laser,” Opt. Commun. 27, 451–454 (1978).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “CARS Applications to Combustion Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng. 621, 116–000 (1986).

Kachanov, A. A.

E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Kolos, R.

R. Kolos, J. Sepiol, “Novel Nanosecond Spectral Continuum Source-High Intensity Mode-Less Amplified Spontaneous Emission,” Opt. Commun. 69, 308–310 (1989).
[CrossRef]

Koloshnikov, V. G.

E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

Lee, A. G.

F. J. Morgan, C. H. Dugan, A. G. Lee, “Laser Intracavity Absorption: A Numerical And Experimental Study With A Pulsed Dye Laser,” Opt. Commun. 27, 451–454 (1978).
[CrossRef]

Morgan, F. J.

F. J. Morgan, C. H. Dugan, A. G. Lee, “Laser Intracavity Absorption: A Numerical And Experimental Study With A Pulsed Dye Laser,” Opt. Commun. 27, 451–454 (1978).
[CrossRef]

Roh, W. B.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Sepiol, J.

R. Kolos, J. Sepiol, “Novel Nanosecond Spectral Continuum Source-High Intensity Mode-Less Amplified Spontaneous Emission,” Opt. Commun. 69, 308–310 (1989).
[CrossRef]

Shirk, J. S.

R. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye Laser Amplified Absorption Spectroscopy In Flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Starzak, M. E.

W. G. Divens, M. E. Starzak, “Intracavity Enhancement Of Absorption In The Nanosecond Regime,” Opt. Commun. 26, 186–188 (1978).
[CrossRef]

Taran, J. P. E.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Thrash, R. J.

R. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye Laser Amplified Absorption Spectroscopy In Flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Toschek, P. E.

V. M. Baev, K. J. Boller, P. E. Toschek, “Polarisation-Dependent Interference of Two-Photon Absorption In A Broad-Band Laser,” Opt. Commun. 66, 225–230 (1988).
[CrossRef]

P. E. Toschek, V. M. Baev, “One Is Not Enough: IntraCavity Spectroscopy with Multimode Lasers,” in Lasers, Spectroscopy and New Ideas: a Tribute to Arthur L. Schawlow, W. M. Yen, M. D. Levenson, Eds. (Springer-Verlag, Berlin, 1987), pp. 89–111.

von Weyssenhoff, H.

R. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye Laser Amplified Absorption Spectroscopy In Flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Appl. Phys. Lett. (1)

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

J. Chem. Phys. (1)

R. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye Laser Amplified Absorption Spectroscopy In Flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Opt. Commun. (5)

F. J. Morgan, C. H. Dugan, A. G. Lee, “Laser Intracavity Absorption: A Numerical And Experimental Study With A Pulsed Dye Laser,” Opt. Commun. 27, 451–454 (1978).
[CrossRef]

W. G. Divens, M. E. Starzak, “Intracavity Enhancement Of Absorption In The Nanosecond Regime,” Opt. Commun. 26, 186–188 (1978).
[CrossRef]

V. M. Baev, K. J. Boller, P. E. Toschek, “Polarisation-Dependent Interference of Two-Photon Absorption In A Broad-Band Laser,” Opt. Commun. 66, 225–230 (1988).
[CrossRef]

E. N. Antonov, P. S. Antsyferov, A. A. Kachanov, V. G. Koloshnikov, “Parasitic Selection In Intracavity Laser Detection Spectroscopy,” Opt. Commun. 41, 131–134 (1982).
[CrossRef]

R. Kolos, J. Sepiol, “Novel Nanosecond Spectral Continuum Source-High Intensity Mode-Less Amplified Spontaneous Emission,” Opt. Commun. 69, 308–310 (1989).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. C. Eckbreth, “CARS Applications to Combustion Diagnostics,” Proc. Soc. Photo-Opt. Instrum. Eng. 621, 116–000 (1986).

Other (2)

P. E. Toschek, V. M. Baev, “One Is Not Enough: IntraCavity Spectroscopy with Multimode Lasers,” in Lasers, Spectroscopy and New Ideas: a Tribute to Arthur L. Schawlow, W. M. Yen, M. D. Levenson, Eds. (Springer-Verlag, Berlin, 1987), pp. 89–111.

F. P. Schafer, Ed., Dye Lasers (Springer-Verlag, New York, 1973).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the alignment geometries for a broadband laser: CVL, copper vapor laser; M, high reflectivity mirror. (a) Laser aligned on reflected beam (R) with outcoupling wedge (W) or on direct beam (D) with wedge W′. θ is the grazing angle at the liquid–dye cell (L–D) interface. (b) Alignment on the direct beam. The laser beam divergence and refractive effects are not shown.

Fig. 2
Fig. 2

Spectrum of laser output in different alignment conditions: (a) aligned on the reflected beam and (b) aligned on the direct beam. The intensity scales for the two curves are not the same.

Fig. 3
Fig. 3

Experimental arrangement for studying the interference effect at the L–D interface on a narrowband laser beam as a function of laser wavelength. Enlarged photographs of the laser beam spot are shown (b) at a certain λ and (c) at λ + 0.2 nm. The arrows mark the position of the geometric shadow of the interface.

Fig. 4
Fig. 4

A log–log plot showing dependence of the period Δλ of the fringes on optical path difference in the passive cell introduced in the broadband laser. The solid line represents the theoretical curve [Eq. (1)].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ 2 / [ ( μ s - μ l ) h ] .

Metrics