Abstract

In underwater optical imaging using pulsed laser radiation the vector nature of the electromagnetic wave can be used to produce polarization contrast. We have analyzed different polarimetric transformations of light pulses through seawater on immersed targets and defined optimum conditions for using polarization parameters.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Solomon, “Polarization Imaging,” Appl. Opt. 20, 1537–1544 (1981).
    [CrossRef] [PubMed]
  2. R. Walraven, “Polarization Imagery,” Soc. Photo. Opt. Instrum. Eng. J 112, 164–167 (1977).
  3. H. B. Hallock, J. Halajian, “Polarization Imaging and Mapping,” Appl. Opt. 22, 964–966 (1983).
    [CrossRef] [PubMed]
  4. G. V. Rozenberg, “Polarization Contrast,” Atmos. Oceanic Phys. 19, 358–362 (1983).
  5. G. G. Stokes, “On the Composition and Resolution of Streams of Polarized Light from Different Sources,” Trans. Cambridge Philos. Soc. 9, 399.
  6. R. C. Jones, “A New Calculus for the Treatment of Optical Systems,” J. Opt. Soc. Am. 31, 488–000 (1941); J. Opt. Soc. Am. 32, 486–000 (1942).
    [CrossRef]
  7. H. Mueller, “The Foundations of Optics,” J. Opt. Soc. Am. 38, 661–000 (1948).
  8. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  9. J. J. Gil, E. Bernabeu, “A Depolarization Criterion in Mueller Matrices,” Opt. Acta 32, 259–261 (1985).
    [CrossRef]
  10. M. Born, E. Wolff, Principles of Optics (Pergamon, New York, 1983).
  11. B. Le Jeune, J. Cariou, J. Lotrian, “Underwater Imaging by Laser: Target Discrimination by Polarization and Speckle Characteristics,” Soc. Photo-Opt. Instrum. Eng. 1029, 193–200 (1988).

1988

B. Le Jeune, J. Cariou, J. Lotrian, “Underwater Imaging by Laser: Target Discrimination by Polarization and Speckle Characteristics,” Soc. Photo-Opt. Instrum. Eng. 1029, 193–200 (1988).

1985

J. J. Gil, E. Bernabeu, “A Depolarization Criterion in Mueller Matrices,” Opt. Acta 32, 259–261 (1985).
[CrossRef]

1983

H. B. Hallock, J. Halajian, “Polarization Imaging and Mapping,” Appl. Opt. 22, 964–966 (1983).
[CrossRef] [PubMed]

G. V. Rozenberg, “Polarization Contrast,” Atmos. Oceanic Phys. 19, 358–362 (1983).

1981

1977

R. Walraven, “Polarization Imagery,” Soc. Photo. Opt. Instrum. Eng. J 112, 164–167 (1977).

1948

H. Mueller, “The Foundations of Optics,” J. Opt. Soc. Am. 38, 661–000 (1948).

1941

Bernabeu, E.

J. J. Gil, E. Bernabeu, “A Depolarization Criterion in Mueller Matrices,” Opt. Acta 32, 259–261 (1985).
[CrossRef]

Born, M.

M. Born, E. Wolff, Principles of Optics (Pergamon, New York, 1983).

Cariou, J.

B. Le Jeune, J. Cariou, J. Lotrian, “Underwater Imaging by Laser: Target Discrimination by Polarization and Speckle Characteristics,” Soc. Photo-Opt. Instrum. Eng. 1029, 193–200 (1988).

Gil, J. J.

J. J. Gil, E. Bernabeu, “A Depolarization Criterion in Mueller Matrices,” Opt. Acta 32, 259–261 (1985).
[CrossRef]

Halajian, J.

Hallock, H. B.

Jones, R. C.

Le Jeune, B.

B. Le Jeune, J. Cariou, J. Lotrian, “Underwater Imaging by Laser: Target Discrimination by Polarization and Speckle Characteristics,” Soc. Photo-Opt. Instrum. Eng. 1029, 193–200 (1988).

Lotrian, J.

B. Le Jeune, J. Cariou, J. Lotrian, “Underwater Imaging by Laser: Target Discrimination by Polarization and Speckle Characteristics,” Soc. Photo-Opt. Instrum. Eng. 1029, 193–200 (1988).

Mueller, H.

H. Mueller, “The Foundations of Optics,” J. Opt. Soc. Am. 38, 661–000 (1948).

Rozenberg, G. V.

G. V. Rozenberg, “Polarization Contrast,” Atmos. Oceanic Phys. 19, 358–362 (1983).

Solomon, J. E.

Stokes, G. G.

G. G. Stokes, “On the Composition and Resolution of Streams of Polarized Light from Different Sources,” Trans. Cambridge Philos. Soc. 9, 399.

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Walraven, R.

R. Walraven, “Polarization Imagery,” Soc. Photo. Opt. Instrum. Eng. J 112, 164–167 (1977).

Wolff, E.

M. Born, E. Wolff, Principles of Optics (Pergamon, New York, 1983).

Appl. Opt.

Atmos. Oceanic Phys.

G. V. Rozenberg, “Polarization Contrast,” Atmos. Oceanic Phys. 19, 358–362 (1983).

J. Opt. Soc. Am.

Opt. Acta

J. J. Gil, E. Bernabeu, “A Depolarization Criterion in Mueller Matrices,” Opt. Acta 32, 259–261 (1985).
[CrossRef]

Soc. Photo-Opt. Instrum. Eng.

B. Le Jeune, J. Cariou, J. Lotrian, “Underwater Imaging by Laser: Target Discrimination by Polarization and Speckle Characteristics,” Soc. Photo-Opt. Instrum. Eng. 1029, 193–200 (1988).

Soc. Photo. Opt. Instrum. Eng. J

R. Walraven, “Polarization Imagery,” Soc. Photo. Opt. Instrum. Eng. J 112, 164–167 (1977).

Trans. Cambridge Philos. Soc.

G. G. Stokes, “On the Composition and Resolution of Streams of Polarized Light from Different Sources,” Trans. Cambridge Philos. Soc. 9, 399.

Other

M. Born, E. Wolff, Principles of Optics (Pergamon, New York, 1983).

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Functional positions of the polarizing devices (polarizers and retardation plates).

Fig. 2
Fig. 2

Experimental setup for the study of seawater (transmission and backscattering): R0, reference signal; R 0 , synchronization signal P1,P2,P3: Glan-Thompson polarizers; T; water tank; M1,M2,M3: mirrors; and R1,R2,R3: analyzed signals.

Fig. 3
Fig. 3

Experimental setup for the study of immersed targets: R0, reference signal; P1,P2,P3: Glan-Thompson polarizers; R1,R2,R3: analyzed signals; M1,M2: mirrors; T: water tank, and P: orientable plate for targets.

Fig. 4
Fig. 4

Polarization structure of the pulsed backscattered signals by the medium for different values of the absorption coefficient c; α is the analyzer angle with the vertical direction of the polarizer. (The first signal is due to the diffusion at the interface with the water).

Fig. 5
Fig. 5

Polarization reversibility effects on the backscattered signals. (a) Observed signals: 1. circular right-hand emission and circular left-hand analysis; 2. circular right-hand emission and circular right-hand analysis; and 3. linear polarized emission and linear-crossed analysis. (b) Normalized signals: 1. circular right-hand emission and circular left-hand analysis; 2. circular right-hand emission and circular right-hand analysis; and 3. linear polarized emission and linear-crossed analysis.

Fig. 6
Fig. 6

Depolarization values 1 M 11 2 [ i , j = 1 4 ( M i j 2 ) ](artificial targets). Backscattered signal direction: a, 120°; b, 150°; and c, 180°.

Fig. 7
Fig. 7

Polarization contrast (two different materials). Backscattered signal direction 180°.

Fig. 8
Fig. 8

Polarization contrast (two different materials). Backscattered signal direction 180°.

Fig. 9
Fig. 9

Polarization contrast (gloss paint). Backscattered signal direction: a, 180°; b, 150°; and c, 120°.

Tables (2)

Tables Icon

Table I v and v′ Values and Polarization States of Signals

Tables Icon

Table II Evolution of Mueller Matrix Configuration With the Density of Scatterers (in Forward Scattering)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

[ S 0 S 1 S 2 S 3 ] = [ M ] [ S 0 S 1 S 2 S 3 ] .
I = K [ m 11 + m 12 C 2 + m 13 C S + m 14 S + ( m 21 + m 22 C 2 + m 23 C S + m 24 S ) ( - C 2 ) - ( m 31 + m 32 C 2 + m 33 C S + m 34 S ) ( C S ) + ( m 41 + m 42 C 2 + m 43 C S + m 44 S ) ( S ) ]
C = cos 2 v C = cos 2 v S = sin 2 v S = sin 2 v
i , j = 1 , 2 , 3 , 4 M i j 2 .
1 m 11 2 ( i , j m i j 2 ) = 1 ,
1 m 11 2 ( i , j m i j 2 ) = 4 ,
[ m 11 0 0 0 0 m 22 0 0 0 0 m 22 0 0 0 0 m 44 ] ,
[ m 11 0 0 0 0 m 22 0 0 0 0 - m 22 0 0 0 0 m 44 ] .
i , j = 1 , 2 , 3 , 4 m i j 2 = i = 1 , 2 , 3 , 4 m i i 2
1 1 m 11 2 i , j m i j 2 4.
degree of polarization P = ( S 1 2 + S 2 2 + S 3 2 ) 1 / 2 S 0 , polarization factor P = S 1 S 0 , azimuthal angle of the polarization ellipse semimajor axis tan 2 θ = S 2 S 1 .
μ x y = S 2 + i S 3 S 0 2 - S 1 2 .
1 M 11 2 [ i , j = 1 4 ( M i j 2 ) ]

Metrics