Abstract

Laser-induced changes in the refractive index are used to create superimposed transient population gratings and permanent structural gratings in Eu3+ doped silicate and phosphate glasses. Potential uses for these laser-induced gratings (LIGs) are investigated. First, the structural gratings are shown to be permanent at room temperature and their use as a holographic storage medium is discussed. Second, a permanent LIG of this type is used to demultiplex multifrequency laser beams, demonstrating its use as a tunable line filter. Third, the transient LIG is used to modulate the amplitude of a laser beam which is passed through the sample and scatters off the permanent LIG. This results in information being transferred from one beam to another beam. It was found that thermal lensing plays an important role in the formation of this type of permanent LIG and a procedure for determining the tilt angle of the fringes of the LIG is discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, A. Odajima, “Photo-Optical Switching Devices by Amorphous As2S3 Waveguides,” Appl. Phys. Lett. 38, 481 (1981).
    [CrossRef]
  2. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-Band Bragg Reflectors in Optical Fibers,” Opt. Lett. 3, 66 (1978).
    [CrossRef] [PubMed]
  3. G. T. Sincerbox, G. Roosen, “Opto–Optical Light Deflection,” Appl. Opt. 22, 690–697 (1983).
    [CrossRef] [PubMed]
  4. F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-Induced Refractive-Index Gratings in Eu-doped Glasses,” Phys. Rev. B 34, 4213 (1986).
    [CrossRef]
  5. E. G. Behrens, F. M. Durville, R. C. Powell, “Observation of Erasable Holographic Gratings at Room Temperature in Eu3+ Doped Glasses,” Opt. Lett. 11, 653 (1986).
    [CrossRef] [PubMed]
  6. R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
    [CrossRef]
  7. F. M. Durville, E. G. Behrens, R. C. Powell, “Relationship Between Laser-Induced Gratings and Vibrational Properties of Eu-Doped Glasses,” Phys. Rev. B 35, 4109 (1987).
    [CrossRef]
  8. E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
    [CrossRef]
  9. P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications I: Topics in Applied Physics, P. Gunter, J.-P. Huignard Eds. (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  10. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  11. F. M. Durville, R. C. Powell, “Thermal Lensing and Permanent Refractive Index Changes in Rare-Earth-Doped Glasses,” J. Opt. Soc. Am. 4, 1934–1942 (1987).
    [CrossRef]
  12. X. Gang, R. C. Powell, “Site-Selection Spectroscopy and Energy Transfer Studies of Eu3+ Ions in Glass Hosts,” J. Appl. Phys. 57, 1299 (1985).
    [CrossRef]
  13. E. G. Behrens, R. C. Powell, D. H. Blackburn, Phys. Rev. B, to be published.

1989

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
[CrossRef]

1988

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
[CrossRef]

1987

F. M. Durville, E. G. Behrens, R. C. Powell, “Relationship Between Laser-Induced Gratings and Vibrational Properties of Eu-Doped Glasses,” Phys. Rev. B 35, 4109 (1987).
[CrossRef]

F. M. Durville, R. C. Powell, “Thermal Lensing and Permanent Refractive Index Changes in Rare-Earth-Doped Glasses,” J. Opt. Soc. Am. 4, 1934–1942 (1987).
[CrossRef]

1986

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-Induced Refractive-Index Gratings in Eu-doped Glasses,” Phys. Rev. B 34, 4213 (1986).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, “Observation of Erasable Holographic Gratings at Room Temperature in Eu3+ Doped Glasses,” Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

1985

X. Gang, R. C. Powell, “Site-Selection Spectroscopy and Energy Transfer Studies of Eu3+ Ions in Glass Hosts,” J. Appl. Phys. 57, 1299 (1985).
[CrossRef]

1983

1981

K. Tanaka, A. Odajima, “Photo-Optical Switching Devices by Amorphous As2S3 Waveguides,” Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

1978

1969

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Behrens, E. G.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, “Relationship Between Laser-Induced Gratings and Vibrational Properties of Eu-Doped Glasses,” Phys. Rev. B 35, 4109 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, “Observation of Erasable Holographic Gratings at Room Temperature in Eu3+ Doped Glasses,” Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-Induced Refractive-Index Gratings in Eu-doped Glasses,” Phys. Rev. B 34, 4213 (1986).
[CrossRef]

E. G. Behrens, R. C. Powell, D. H. Blackburn, Phys. Rev. B, to be published.

Blackburn, D. H.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
[CrossRef]

E. G. Behrens, R. C. Powell, D. H. Blackburn, Phys. Rev. B, to be published.

Dixon, G. S.

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
[CrossRef]

Durville, F. M.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
[CrossRef]

F. M. Durville, R. C. Powell, “Thermal Lensing and Permanent Refractive Index Changes in Rare-Earth-Doped Glasses,” J. Opt. Soc. Am. 4, 1934–1942 (1987).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, “Relationship Between Laser-Induced Gratings and Vibrational Properties of Eu-Doped Glasses,” Phys. Rev. B 35, 4109 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, “Observation of Erasable Holographic Gratings at Room Temperature in Eu3+ Doped Glasses,” Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-Induced Refractive-Index Gratings in Eu-doped Glasses,” Phys. Rev. B 34, 4213 (1986).
[CrossRef]

Fujii, Y.

Gang, X.

X. Gang, R. C. Powell, “Site-Selection Spectroscopy and Energy Transfer Studies of Eu3+ Ions in Glass Hosts,” J. Appl. Phys. 57, 1299 (1985).
[CrossRef]

Gunter, P.

P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications I: Topics in Applied Physics, P. Gunter, J.-P. Huignard Eds. (Springer-Verlag, Berlin, 1988).
[CrossRef]

Hill, K. O.

Huignard, J.-P.

P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications I: Topics in Applied Physics, P. Gunter, J.-P. Huignard Eds. (Springer-Verlag, Berlin, 1988).
[CrossRef]

Johnson, D. C.

Kawasaki, B. S.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Odajima, A.

K. Tanaka, A. Odajima, “Photo-Optical Switching Devices by Amorphous As2S3 Waveguides,” Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

Powell, R. C.

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, “Relationship Between Laser-Induced Gratings and Vibrational Properties of Eu-Doped Glasses,” Phys. Rev. B 35, 4109 (1987).
[CrossRef]

F. M. Durville, R. C. Powell, “Thermal Lensing and Permanent Refractive Index Changes in Rare-Earth-Doped Glasses,” J. Opt. Soc. Am. 4, 1934–1942 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, “Observation of Erasable Holographic Gratings at Room Temperature in Eu3+ Doped Glasses,” Opt. Lett. 11, 653 (1986).
[CrossRef] [PubMed]

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-Induced Refractive-Index Gratings in Eu-doped Glasses,” Phys. Rev. B 34, 4213 (1986).
[CrossRef]

X. Gang, R. C. Powell, “Site-Selection Spectroscopy and Energy Transfer Studies of Eu3+ Ions in Glass Hosts,” J. Appl. Phys. 57, 1299 (1985).
[CrossRef]

E. G. Behrens, R. C. Powell, D. H. Blackburn, Phys. Rev. B, to be published.

Roosen, G.

Sincerbox, G. T.

Tanaka, K.

K. Tanaka, A. Odajima, “Photo-Optical Switching Devices by Amorphous As2S3 Waveguides,” Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Tanaka, A. Odajima, “Photo-Optical Switching Devices by Amorphous As2S3 Waveguides,” Appl. Phys. Lett. 38, 481 (1981).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys.

X. Gang, R. C. Powell, “Site-Selection Spectroscopy and Energy Transfer Studies of Eu3+ Ions in Glass Hosts,” J. Appl. Phys. 57, 1299 (1985).
[CrossRef]

J. Lumin.

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-Wave Mixing and Fluorescence Linenarrowing Studies of Eu3+ Ions in Glasses,” J. Lumin. 40, 68 (1988).
[CrossRef]

J. Opt. Soc. Am.

F. M. Durville, R. C. Powell, “Thermal Lensing and Permanent Refractive Index Changes in Rare-Earth-Doped Glasses,” J. Opt. Soc. Am. 4, 1934–1942 (1987).
[CrossRef]

Opt. Lett.

Phys. Rev. B

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-Induced Refractive-Index Gratings in Eu-doped Glasses,” Phys. Rev. B 34, 4213 (1986).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, “Relationship Between Laser-Induced Gratings and Vibrational Properties of Eu-Doped Glasses,” Phys. Rev. B 35, 4109 (1987).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, D. H. Blackburn, “Properties of Laser-Induced Gratings in Eu-Doped Glasses,” Phys. Rev. B 39, 6076 (1989).
[CrossRef]

Other

P. Gunter, J.-P. Huignard, in Photorefractive Materials and Their Applications I: Topics in Applied Physics, P. Gunter, J.-P. Huignard Eds. (Springer-Verlag, Berlin, 1988).
[CrossRef]

E. G. Behrens, R. C. Powell, D. H. Blackburn, Phys. Rev. B, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Time evolution of LIG signal intensity in the EP glass sample.

Fig. 2
Fig. 2

Definition of parameters in the grating formation process: λw is the write beam wavelength in the sample; 2ΘA is the write beam crossing angle in air; n is the index of refraction of the LS sample; 2ΘS is the write beam crossing angle inside the sample; and ΛG is the laser-induced grating wavelength.

Fig. 3
Fig. 3

Definition of parameters in the probe portion of the experiment. λp is the probe beam wavelength in the sample, ΦA and ΦS are the angles between the probe beam and the perpendicular to the sample in air and in the sample, respectively.

Fig. 4
Fig. 4

Intensity of laser-induced grating signal as a function of the angle between the probe beam and the perpendicular to the sample. The symbols correspond to: ■, 632.8 nm; ●, 488.0 nm.

Fig. 5
Fig. 5

Angle in the sample at which maximum scattering intensity occurs vs probe beam wavelength in the sample.

Fig. 6
Fig. 6

Definition of Bragg angle and other angles involved in the grating spacing calculation.

Fig. 7
Fig. 7

Definition of angles involved in thermal lensing process: 2ΘS is the write beam crossing angle in the sample without thermal lensing; 2 Θ S is writed beam angle with thermal lensing.

Fig. 8
Fig. 8

From top to bottom: write, probe, and signal beam intensities in the modulation experiment.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S n 1 = d n i d w ,
S η 1 = d ( η 1 / 2 ) d w × 1 d ,
n λ p = 2 Λ G sin Φ 0 ,
λ p 1 = 2 Λ G sin ( Φ S 1 - Φ )
λ p 2 = 2 Λ G sin ( Φ S 2 - Φ ) .
Δ λ p = 2 Λ G Δ Φ S .
Λ G = Δ λ p 2 Δ Φ S .
m = Δ Φ S Δ λ p
Λ G = 1 2 m .
Λ L = λ W Θ S ,
f = π k w 2 n T 0.553 P A ,
f B = f D P D w B 2 P B w D 2 ,
λ P = 2 Λ G sin ( Φ S - Φ )
Φ = Φ S - λ P 2 Λ G .
I ( t ) = I 1 ( t ) + I 2 ,

Metrics