Abstract

We underline the experimental feasibility of the extinction coefficient measurement c = a + b (a is the absorption coefficient, b is the diffusion coefficient) for a liquid medium, extracted from the temporal shape of the backscattered signal at 180° to the incident laser pulses.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).
  2. L. R. Poole, “Computed Laser Backscattering from Turbid Liquids: Comparison with Laboratory Results,” Appl. Opt. 21, 2262–2264 (1982).
    [CrossRef] [PubMed]
  3. D. Bright, J. W. Caruthers, “The Effect of Detector Field-of-View on Laser Backscatter and Bottom Reflection Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 281–286 (1984).
  4. H. S. Lee, N. T. O’Neill, “Lidar Return Pulse Profile and Its Relationship to Water Optical Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 297–305 (1984).
  5. H. R. Gordon, “Interpretation of Airborne Oceanic Lidar: Effects of Multiple Scattering,” Appl. Opt. 21, 2996–3001 (1982).
    [CrossRef] [PubMed]
  6. L. R. Poole, D. D. Venable, J. W. Campbell, “Semianalytic Monte Carlo Radiative Transfer Model For Oceanographic Lidar Systems,” Appl. Opt. 20, 3653–3656 (1981).
    [CrossRef] [PubMed]

1984 (2)

D. Bright, J. W. Caruthers, “The Effect of Detector Field-of-View on Laser Backscatter and Bottom Reflection Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 281–286 (1984).

H. S. Lee, N. T. O’Neill, “Lidar Return Pulse Profile and Its Relationship to Water Optical Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 297–305 (1984).

1982 (2)

1981 (1)

1972 (1)

E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).

Bright, D.

D. Bright, J. W. Caruthers, “The Effect of Detector Field-of-View on Laser Backscatter and Bottom Reflection Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 281–286 (1984).

Campbell, J. W.

Caruthers, J. W.

D. Bright, J. W. Caruthers, “The Effect of Detector Field-of-View on Laser Backscatter and Bottom Reflection Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 281–286 (1984).

Gordon, H. R.

Ivanov, A. P.

E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).

Kargai, B. A.

E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).

Katrev, I. L.

E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).

Lee, H. S.

H. S. Lee, N. T. O’Neill, “Lidar Return Pulse Profile and Its Relationship to Water Optical Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 297–305 (1984).

O’Neill, N. T.

H. S. Lee, N. T. O’Neill, “Lidar Return Pulse Profile and Its Relationship to Water Optical Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 297–305 (1984).

Poole, L. R.

Venable, D. D.

Zege, E. P.

E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).

Appl. Opt. (3)

Bull. Acad. Sci. URSS Atmos. Oceanic Phys. (1)

E. P. Zege, A. P. Ivanov, B. A. Kargai, I. L. Katrev, “Determination of the Attenuation and Scattering Coefficients of Water and the Atmosphere from the Time Spread of a Reflected Pulsed Signal,” Bull. Acad. Sci. URSS Atmos. Oceanic Phys. 8, 10–16 (1972).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. Bright, J. W. Caruthers, “The Effect of Detector Field-of-View on Laser Backscatter and Bottom Reflection Measurements,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 281–286 (1984).

H. S. Lee, N. T. O’Neill, “Lidar Return Pulse Profile and Its Relationship to Water Optical Parameters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 297–305 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: dye laser with 4-ns pulse duration; R1, detector for the backscattered signal; R2, lateral detector; M2, 5- × 10-mm mirror.

Fig. 2
Fig. 2

Backscattered signal in distilled water with c = 0.08 m−1 (trace 1) and backscattered signal from a diffuse target (trace 2) at the entrance of curve c (temporal reference). The first maxima in trace 1 can be attributed to diffusion on the M2 small mirror.

Fig. 3
Fig. 3

Experimental normalized traces from a backscattered signal (a1) and a 90° diffuse signal (a2) using distilled water with kaolinite powder added for c = 0.45 m−1.

Tables (1)

Tables Icon

Table I c Values in m−1 (Pure Water + Clay Powder)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ( t ) = P ( t ) * T ( t ) ,
T ( t ) = v 2 n β ( 180 ) exp - c v t n · Ω ( t )
R ( t ) = [ K exp ( - c v t / n ) ] / ( 2 n l + v t / n ) 2 ,
log [ R ( t ) ( 2 n l + v t / n ) 2 ] = K - c v t / n ,

Metrics