Abstract

A mathematical model with experimental verification is presented to characterize the performance of surface and embedded electrodes in 2-D electrooptic modulators. From the solution of a discretized integral equation for the electrode surface charge, the electrode capacitance and the electric field penetration and uniformity are related to the switching voltage, speed, and uniformity of the electrooptic modulation. Fabricated surface and embedded electrodes in 9/65/35 PLZT are then evaluated with respect to the predictions of the model and the saturated quadratic response of the electrooptic material. These results provide important insight into the design trade-offs of switching speed, halfwave voltage, switching energy, and modulation uniformity of surface and embedded modulator geometries.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription