Abstract

Inelastic (transpectral) scattering may contribute significantly to the in-water light field. Major mechanisms for inelastic scattering include Raman scattering, which we show is important in clear ocean waters, and fluorescence from a variety of sources, which may be important in more turbid waters. We have determined the Raman cross section for liquid water, 8.2 × 10−30 (cm2 sr−1 molecule−1), which is in agreement with the lower range of published values. The influence of Raman scattering, based on predictions of a modified two-stream model, is in agreement with measured values of spectral reflectance R(λ,z) and the spectral diffuse attenuation coefficient for irradiance K(λ,z). Inelastic scattering has important ramifications for several aspects of marine biooptics including the determination of in-water spectral absorption, the estimation of clear water ocean optical properties, and possibly various aspects of algal photobiology.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Smith, K. S. Baker, “Optical Properties of the Clearest Natural Waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  2. N. G. Jerlov, Marine Optics (Elsevier, New York, 1976).
  3. H. R. Gordon, “Simple Calculation of the Diffuse Reflectance in the Ocean,” Appl. Opt. 12, 2803–2804 (1973).
    [CrossRef] [PubMed]
  4. H. R. Gordon, O. Brown, Jacobs, “Computed Relationships Between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  5. H. R. Gordon, “Radiative Transfer in the Ocean: a Method for Determination of Absorption and Scattering Properties,” Appl. Opt. 15, 2611–2613 (1976).
    [CrossRef] [PubMed]
  6. R. W. Preisendorfer, Hydrologic Optics (U.S. Department of Commerce, NOAA, ERL, 1976).
  7. H. R. Gordon, R. C. Smith, J. R. V. Zaneveld, “Introduction to Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 208, 14–55 (1979).
  8. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, (Cambridge U. P., London, 1983).
  9. A. Gershun, “The Light Field,” J. Math. Phys. 18, 51–151 (1939).
  10. R. W. Preisendorfer, “The divergence of the light field in optical media,” Scripps Institution of Oceanography, Reference Report 58–41 (1958).
  11. J. E. Tyler, “An Instrument for the Measurement of the Volume Absorption Coefficient of Horizontally Stratified Waters,” U.S. Gov. Res. Rep., PB-154030, Contract bs-72039, Task Rep. 5-4 (1961).
  12. N. Hojerslev, “A Spectral Light Absorption Meter for Measurements in the Sea,” Limnol. Oceanogr. 20, 1024–1034 (1975).
    [CrossRef]
  13. C. R. Booth, Biospherical Instruments, Inc.; private communication.
  14. D. Spitzer, M. R. Wernand, “In Situ Measurements of Absorption Spectra in the Sea,” Deep Sea Res. 28A, 165–174, (1981).
  15. S. Sugihara, M. Kishino, M. Okami, “Contribution of Raman Scattering to Upward Irradiance in the Sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
    [CrossRef]
  16. R. H. Stavn, A. D. Weidemann, “Optical Modeling of Clear Ocean Light Fields: Raman Scattering Effects,” Appl. Opt. 27, 4002–4010 (1988).
    [CrossRef] [PubMed]
  17. R. H. Stavn, A. D. Weidemann, “Raman Scattering Effects in Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 925, 131–139 (1988).
  18. R. W. Preisendorfer, C. D. Mobley, “Theory of Fluorescent Irradiance Fields in Natural Waters,” J. Geophys. Res. 93, 10831–10855 (1988).
    [CrossRef]
  19. H. R. Gordon, “Diffuse Reflectance of the Ocean: the Theory of its Augmentation by Chlorophyll a Fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979).
    [CrossRef] [PubMed]
  20. D. Spitzer, M. R. Wernand, “Multispectral Remote Sensing of Fluorescent Tracers,” Oceanologica Acta 6, 201–210 (1983).
  21. N. P. Romanov, V. S. Shuklin, “Raman Scattering Cross Section of Liquid Water,” Opt. Spectrosc. 38, 646–648 (1975).
  22. I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).
  23. R. B. Slusher, V. E. Derr, “Temperature Dependence and Cross Sections of some Stokes and Anti-Stokes Raman Lines in Ice Ih,” Appl. Opt. 14, 2116–2120 (1975).
    [CrossRef] [PubMed]
  24. C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Research Note 920, N62269-72-C-0204, sponsored by Advanced Research Projects Agency, ARPA Order No. 1911 (July1972).
  25. J. E. Tyler, R. C. Smith, Measurement of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).
  26. Y. Kato, H. Takuma, “Absolute Measurement of Raman Scattering Cross Sections of Liquids,” J. Opt. Soc. Am. 61, 347–350 (1971).
    [CrossRef]
  27. H. W. Schrotter, H. W. Klockner, “Raman Scattering Cross Sections in Gases and Liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer-Verlag, Berlin, 1979).
    [CrossRef]
  28. J. G. Skinner, W. G. Nilsen, “Absolute Raman Scattering Cross-Section Measurement of the 992 cm−1 Line of Benzene,” J. Opt. Soc. Am. 58, 113–119 (1968).
    [CrossRef]
  29. A. Morel, R. C. Smith, “Terminology and Units in Optical Oceanography,” Mar. Geodesy 5, 335–349 (1982).
    [CrossRef]
  30. B. R. Marshall, “Raman Scattering in Ocean Water,” Master’s Thesis, Geography Department, U. California at Santa Barbara (1989).
  31. R. C. Smith, C. R. Booth, J. L. Star, “Oceanographic Biooptical Profiling System,” Appl. Opt. 23, 2791–2797 (1984).
    [CrossRef] [PubMed]
  32. Biospherical Instruments, Inc., San Diego, CA.
  33. R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 119–126 (1984).
  34. R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data II,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 95–107 (1986).
  35. J. E. Tyler, “Natural Water as a Monochromator,” Limnol. Oceanogr. 4, 102–105 (1959).
    [CrossRef]
  36. R. W. Austin, T. J. Petzold, K. J. Voss, Scripps Institution of Oceanography; private communication (1988).
  37. D. A. Siegel, C. R. Booth, T. D. Dickey, “Effects of Sensor Characteristics on the Inferred Vertical Structure of the Diffuse Attenuation Coefficient Spectrum,” Proc. Soc. Photo-Opt. Instrum. Eng., 637, 115–123 (1986).
  38. J. R. V. Zaneveld, R. Bartz, “Beam Attenuation and Absorption Meters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 318–324 (1984).
  39. R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260–267 (1978).
    [CrossRef]
  40. A. C. Tam, C. K. N. Patel, “Optical Absorptions of Light and Heavy Water by Laser Optoacoustic Spectroscopy,” Appl. Opt. 18, 3348–3358 (1979).
    [CrossRef] [PubMed]
  41. K. C. Smith, The Science of Photobiology (Plenum, New York, 1977).
    [CrossRef]

1988

R. H. Stavn, A. D. Weidemann, “Raman Scattering Effects in Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 925, 131–139 (1988).

R. W. Preisendorfer, C. D. Mobley, “Theory of Fluorescent Irradiance Fields in Natural Waters,” J. Geophys. Res. 93, 10831–10855 (1988).
[CrossRef]

R. H. Stavn, A. D. Weidemann, “Optical Modeling of Clear Ocean Light Fields: Raman Scattering Effects,” Appl. Opt. 27, 4002–4010 (1988).
[CrossRef] [PubMed]

1986

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data II,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 95–107 (1986).

D. A. Siegel, C. R. Booth, T. D. Dickey, “Effects of Sensor Characteristics on the Inferred Vertical Structure of the Diffuse Attenuation Coefficient Spectrum,” Proc. Soc. Photo-Opt. Instrum. Eng., 637, 115–123 (1986).

1984

J. R. V. Zaneveld, R. Bartz, “Beam Attenuation and Absorption Meters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 318–324 (1984).

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 119–126 (1984).

S. Sugihara, M. Kishino, M. Okami, “Contribution of Raman Scattering to Upward Irradiance in the Sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

R. C. Smith, C. R. Booth, J. L. Star, “Oceanographic Biooptical Profiling System,” Appl. Opt. 23, 2791–2797 (1984).
[CrossRef] [PubMed]

1983

D. Spitzer, M. R. Wernand, “Multispectral Remote Sensing of Fluorescent Tracers,” Oceanologica Acta 6, 201–210 (1983).

1982

A. Morel, R. C. Smith, “Terminology and Units in Optical Oceanography,” Mar. Geodesy 5, 335–349 (1982).
[CrossRef]

1981

D. Spitzer, M. R. Wernand, “In Situ Measurements of Absorption Spectra in the Sea,” Deep Sea Res. 28A, 165–174, (1981).

R. C. Smith, K. S. Baker, “Optical Properties of the Clearest Natural Waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

1979

1978

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

1976

1975

1973

1971

1968

1959

J. E. Tyler, “Natural Water as a Monochromator,” Limnol. Oceanogr. 4, 102–105 (1959).
[CrossRef]

1939

A. Gershun, “The Light Field,” J. Math. Phys. 18, 51–151 (1939).

Austin, R. W.

R. W. Austin, T. J. Petzold, K. J. Voss, Scripps Institution of Oceanography; private communication (1988).

Baker, K. S.

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data II,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 95–107 (1986).

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 119–126 (1984).

R. C. Smith, K. S. Baker, “Optical Properties of the Clearest Natural Waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

Bartz, R.

J. R. V. Zaneveld, R. Bartz, “Beam Attenuation and Absorption Meters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 318–324 (1984).

Booth, C. R.

D. A. Siegel, C. R. Booth, T. D. Dickey, “Effects of Sensor Characteristics on the Inferred Vertical Structure of the Diffuse Attenuation Coefficient Spectrum,” Proc. Soc. Photo-Opt. Instrum. Eng., 637, 115–123 (1986).

R. C. Smith, C. R. Booth, J. L. Star, “Oceanographic Biooptical Profiling System,” Appl. Opt. 23, 2791–2797 (1984).
[CrossRef] [PubMed]

C. R. Booth, Biospherical Instruments, Inc.; private communication.

Brown, O.

Chang, C. H.

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Research Note 920, N62269-72-C-0204, sponsored by Advanced Research Projects Agency, ARPA Order No. 1911 (July1972).

Demyanenko, O. P.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).

Derr, V. E.

Dickey, T. D.

D. A. Siegel, C. R. Booth, T. D. Dickey, “Effects of Sensor Characteristics on the Inferred Vertical Structure of the Diffuse Attenuation Coefficient Spectrum,” Proc. Soc. Photo-Opt. Instrum. Eng., 637, 115–123 (1986).

Gershun, A.

A. Gershun, “The Light Field,” J. Math. Phys. 18, 51–151 (1939).

Gordon, H. R.

Hojerslev, N.

N. Hojerslev, “A Spectral Light Absorption Meter for Measurements in the Sea,” Limnol. Oceanogr. 20, 1024–1034 (1975).
[CrossRef]

Jacobs,

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, New York, 1976).

Kato, Y.

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, (Cambridge U. P., London, 1983).

Kishino, M.

S. Sugihara, M. Kishino, M. Okami, “Contribution of Raman Scattering to Upward Irradiance in the Sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Klimenko, V. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).

Klockner, H. W.

H. W. Schrotter, H. W. Klockner, “Raman Scattering Cross Sections in Gases and Liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer-Verlag, Berlin, 1979).
[CrossRef]

Kondilenko, I. I.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).

Korotkov, P. A.

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).

Marshall, B. R.

B. R. Marshall, “Raman Scattering in Ocean Water,” Master’s Thesis, Geography Department, U. California at Santa Barbara (1989).

Mobley, C. D.

R. W. Preisendorfer, C. D. Mobley, “Theory of Fluorescent Irradiance Fields in Natural Waters,” J. Geophys. Res. 93, 10831–10855 (1988).
[CrossRef]

Morel, A.

A. Morel, R. C. Smith, “Terminology and Units in Optical Oceanography,” Mar. Geodesy 5, 335–349 (1982).
[CrossRef]

Nilsen, W. G.

Okami, M.

S. Sugihara, M. Kishino, M. Okami, “Contribution of Raman Scattering to Upward Irradiance in the Sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Patel, C. K. N.

Petzold, T. J.

R. W. Austin, T. J. Petzold, K. J. Voss, Scripps Institution of Oceanography; private communication (1988).

Preisendorfer, R. W.

R. W. Preisendorfer, C. D. Mobley, “Theory of Fluorescent Irradiance Fields in Natural Waters,” J. Geophys. Res. 93, 10831–10855 (1988).
[CrossRef]

R. W. Preisendorfer, “The divergence of the light field in optical media,” Scripps Institution of Oceanography, Reference Report 58–41 (1958).

R. W. Preisendorfer, Hydrologic Optics (U.S. Department of Commerce, NOAA, ERL, 1976).

Romanov, N. P.

N. P. Romanov, V. S. Shuklin, “Raman Scattering Cross Section of Liquid Water,” Opt. Spectrosc. 38, 646–648 (1975).

Schrotter, H. W.

H. W. Schrotter, H. W. Klockner, “Raman Scattering Cross Sections in Gases and Liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer-Verlag, Berlin, 1979).
[CrossRef]

Shuklin, V. S.

N. P. Romanov, V. S. Shuklin, “Raman Scattering Cross Section of Liquid Water,” Opt. Spectrosc. 38, 646–648 (1975).

Siegel, D. A.

D. A. Siegel, C. R. Booth, T. D. Dickey, “Effects of Sensor Characteristics on the Inferred Vertical Structure of the Diffuse Attenuation Coefficient Spectrum,” Proc. Soc. Photo-Opt. Instrum. Eng., 637, 115–123 (1986).

Skinner, J. G.

Slusher, R. B.

Smith, K. C.

K. C. Smith, The Science of Photobiology (Plenum, New York, 1977).
[CrossRef]

Smith, R. C.

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data II,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 95–107 (1986).

R. C. Smith, C. R. Booth, J. L. Star, “Oceanographic Biooptical Profiling System,” Appl. Opt. 23, 2791–2797 (1984).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 119–126 (1984).

A. Morel, R. C. Smith, “Terminology and Units in Optical Oceanography,” Mar. Geodesy 5, 335–349 (1982).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical Properties of the Clearest Natural Waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

H. R. Gordon, R. C. Smith, J. R. V. Zaneveld, “Introduction to Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 208, 14–55 (1979).

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

J. E. Tyler, R. C. Smith, Measurement of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).

Spitzer, D.

D. Spitzer, M. R. Wernand, “Multispectral Remote Sensing of Fluorescent Tracers,” Oceanologica Acta 6, 201–210 (1983).

D. Spitzer, M. R. Wernand, “In Situ Measurements of Absorption Spectra in the Sea,” Deep Sea Res. 28A, 165–174, (1981).

Star, J. L.

Stavn, R. H.

R. H. Stavn, A. D. Weidemann, “Optical Modeling of Clear Ocean Light Fields: Raman Scattering Effects,” Appl. Opt. 27, 4002–4010 (1988).
[CrossRef] [PubMed]

R. H. Stavn, A. D. Weidemann, “Raman Scattering Effects in Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 925, 131–139 (1988).

Sugihara, S.

S. Sugihara, M. Kishino, M. Okami, “Contribution of Raman Scattering to Upward Irradiance in the Sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Takuma, H.

Tam, A. C.

Tyler, J. E.

J. E. Tyler, “Natural Water as a Monochromator,” Limnol. Oceanogr. 4, 102–105 (1959).
[CrossRef]

J. E. Tyler, R. C. Smith, Measurement of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).

J. E. Tyler, “An Instrument for the Measurement of the Volume Absorption Coefficient of Horizontally Stratified Waters,” U.S. Gov. Res. Rep., PB-154030, Contract bs-72039, Task Rep. 5-4 (1961).

Voss, K. J.

R. W. Austin, T. J. Petzold, K. J. Voss, Scripps Institution of Oceanography; private communication (1988).

Weidemann, A. D.

R. H. Stavn, A. D. Weidemann, “Raman Scattering Effects in Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 925, 131–139 (1988).

R. H. Stavn, A. D. Weidemann, “Optical Modeling of Clear Ocean Light Fields: Raman Scattering Effects,” Appl. Opt. 27, 4002–4010 (1988).
[CrossRef] [PubMed]

Wernand, M. R.

D. Spitzer, M. R. Wernand, “Multispectral Remote Sensing of Fluorescent Tracers,” Oceanologica Acta 6, 201–210 (1983).

D. Spitzer, M. R. Wernand, “In Situ Measurements of Absorption Spectra in the Sea,” Deep Sea Res. 28A, 165–174, (1981).

Young, L. A.

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Research Note 920, N62269-72-C-0204, sponsored by Advanced Research Projects Agency, ARPA Order No. 1911 (July1972).

Zaneveld, J. R. V.

J. R. V. Zaneveld, R. Bartz, “Beam Attenuation and Absorption Meters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 318–324 (1984).

H. R. Gordon, R. C. Smith, J. R. V. Zaneveld, “Introduction to Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 208, 14–55 (1979).

Appl. Opt.

Deep Sea Res.

D. Spitzer, M. R. Wernand, “In Situ Measurements of Absorption Spectra in the Sea,” Deep Sea Res. 28A, 165–174, (1981).

J. Geophys. Res.

R. W. Preisendorfer, C. D. Mobley, “Theory of Fluorescent Irradiance Fields in Natural Waters,” J. Geophys. Res. 93, 10831–10855 (1988).
[CrossRef]

J. Math. Phys.

A. Gershun, “The Light Field,” J. Math. Phys. 18, 51–151 (1939).

J. Oceanogr. Soc. Jpn.

S. Sugihara, M. Kishino, M. Okami, “Contribution of Raman Scattering to Upward Irradiance in the Sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

J. Opt. Soc. Am.

Limnol. Oceanogr.

J. E. Tyler, “Natural Water as a Monochromator,” Limnol. Oceanogr. 4, 102–105 (1959).
[CrossRef]

N. Hojerslev, “A Spectral Light Absorption Meter for Measurements in the Sea,” Limnol. Oceanogr. 20, 1024–1034 (1975).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

Mar. Geodesy

A. Morel, R. C. Smith, “Terminology and Units in Optical Oceanography,” Mar. Geodesy 5, 335–349 (1982).
[CrossRef]

Oceanologica Acta

D. Spitzer, M. R. Wernand, “Multispectral Remote Sensing of Fluorescent Tracers,” Oceanologica Acta 6, 201–210 (1983).

Opt. Spectrosc.

N. P. Romanov, V. S. Shuklin, “Raman Scattering Cross Section of Liquid Water,” Opt. Spectrosc. 38, 646–648 (1975).

I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse Cross Section of the Raman Scattering of the u1 Vibration of the Water Moleculein the Liquid and Gaseous States,” Opt. Spectrosc. 43, 384–386 (1978).

Proc. Soc. Photo-Opt. Instrum. Eng.

R. H. Stavn, A. D. Weidemann, “Raman Scattering Effects in Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 925, 131–139 (1988).

H. R. Gordon, R. C. Smith, J. R. V. Zaneveld, “Introduction to Ocean Optics,” Proc. Soc. Photo-Opt. Instrum. Eng. 208, 14–55 (1979).

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 119–126 (1984).

R. C. Smith, K. S. Baker, “The Analysis of Ocean Optical Data II,” Proc. Soc. Photo-Opt. Instrum. Eng. 637, 95–107 (1986).

D. A. Siegel, C. R. Booth, T. D. Dickey, “Effects of Sensor Characteristics on the Inferred Vertical Structure of the Diffuse Attenuation Coefficient Spectrum,” Proc. Soc. Photo-Opt. Instrum. Eng., 637, 115–123 (1986).

J. R. V. Zaneveld, R. Bartz, “Beam Attenuation and Absorption Meters,” Proc. Soc. Photo-Opt. Instrum. Eng. 489, 318–324 (1984).

Other

R. W. Austin, T. J. Petzold, K. J. Voss, Scripps Institution of Oceanography; private communication (1988).

B. R. Marshall, “Raman Scattering in Ocean Water,” Master’s Thesis, Geography Department, U. California at Santa Barbara (1989).

Biospherical Instruments, Inc., San Diego, CA.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, (Cambridge U. P., London, 1983).

R. W. Preisendorfer, “The divergence of the light field in optical media,” Scripps Institution of Oceanography, Reference Report 58–41 (1958).

J. E. Tyler, “An Instrument for the Measurement of the Volume Absorption Coefficient of Horizontally Stratified Waters,” U.S. Gov. Res. Rep., PB-154030, Contract bs-72039, Task Rep. 5-4 (1961).

C. R. Booth, Biospherical Instruments, Inc.; private communication.

N. G. Jerlov, Marine Optics (Elsevier, New York, 1976).

C. H. Chang, L. A. Young, “Seawater Temperature Measurement from Raman Spectra,” Research Note 920, N62269-72-C-0204, sponsored by Advanced Research Projects Agency, ARPA Order No. 1911 (July1972).

J. E. Tyler, R. C. Smith, Measurement of Spectral Irradiance Underwater (Gordon & Breach, New York, 1970).

H. W. Schrotter, H. W. Klockner, “Raman Scattering Cross Sections in Gases and Liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, Ed. (Springer-Verlag, Berlin, 1979).
[CrossRef]

K. C. Smith, The Science of Photobiology (Plenum, New York, 1977).
[CrossRef]

R. W. Preisendorfer, Hydrologic Optics (U.S. Department of Commerce, NOAA, ERL, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental setup for Raman cross-sectional measurement.

Fig. 2
Fig. 2

Irradiance reflectance, R(λ,z), computed using Eq. (23) and clear water optical properties vs depth for various wavelengths.

Fig. 3
Fig. 3

a. Diffuse attenuation coefficient for upward irradiance, Kd(λ,z), computed using Eq. (29) and clear water optical properties vs depth for various wavelengths.

Fig. 4
Fig. 4

Diffuse attenuation coefficient for downward irradiance, Ku(λ,z), computed using Eq. (35) and clear water optical properties vs depth for various wavelengths.

Fig. 5
Fig. 5

Filter spectral transmission.

Fig. 6
Fig. 6

Apparent diffuse attenuation coefficients calculated using Eq. (37) and filter transmission data shown in Fig. 5.

Fig. 7
Fig. 7

Apparent diffuse attenuation coefficients calculated using Eq. (37) for several Gaussian filters.

Fig. 8
Fig. 8

Density (σt), beam transmittance (660 nm), and chlorophyll fluorescence vs depth for Biowatt Station 19, 19 May 1987, in the Northern Sargasso Sea (34.059 N Lat. 69.816 W Long.).

Fig. 9
Fig. 9

Diffuse attenuation coefficients for upward and downward irradiance at 589 nm and scalar irradiance at 488 nm for Biowatt Station 19,19 May 1987, in the Northern Sargasso Sea (34.059 N Lat. 69.816 W Long.).

Fig. 10
Fig. 10

Irradiance reflectance, R(λ,z) for Biowatt Station 19, 19 May 1987, in the Northern Sargasso Sea (34.059 N Lat. 69.816 W Long.).

Fig. 11
Fig. 11

Diffuse attenuation coefficients at 589 nm calculated from 488-nm irradiance. Kd,u (589 nm,z) using a modified Raman model with measured BOPS data for comparison.

Fig. 12
Fig. 12

Irradiance reflectance calculated using a modified Raman model with reflectance based on measured BOPS data for comparison.

Fig. 13
Fig. 13

Diffuse attenuation coefficients based on fluorescence hypothesis.

Fig. 14
Fig. 14

Irradiance reflectance based on fluorescence hypothesis.

Tables (2)

Tables Icon

Table I Transverse Raman Scattering Cross Sections

Tables Icon

Table II Symbols and Definitions

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

· E ( λ ) = - α ( λ ) E 0 ( λ ) ,
( d σ w d Ω ) 90 ° ,
( d σ w d Ω ) 90 ° = ( Φ w Φ b ) ( n w n b ) 2 ( T b T w ) ( D b D w ) ( M w M b ) ( 1 + ρ w 1 + ρ b ) ( d σ b d Ω ) 90 ° ,
( d σ w d Ω ) 90 ° = ( 723 537 ) ( 1.33 1.50 ) 2 ( 1.00 0.98 ) ( 0.8787 g cm - 3 1 g cm - 3 ) × ( 18 g mole - 1 78 g mole - 1 ) ( 1.17 1.02 ) · ( d σ b d Ω ) 90 °
( d σ b d Ω ) 90 °
( 3.8 ± 0.30 ) × 10 - 29 cm 2 sr - 1 ( Skinner and Nilsen , 1968 ) ,
( 3.25 ± 0.10 ) × 10 - 29 cm 2 sr - 1 molecule - 1 ( Kato and Takuma , 1971 ) .
( d σ w d Ω ) 90 ° = 9.6 × 10 - 30 cm 2 sr - 1 molecule - 1 .
( d σ w d Ω ) 90 ° = 8.2 × 10 - 30 cm 2 sr - 1 molecule - 1 .
( d σ w d Ω ) 90 ° = 8.2 × 10 - 30 ( cm 2 sr - 1 molecule - 1 )
d σ w d Ω = ( d σ w d Ω ) 90 ° [ ρ + ( 1 - ρ ) sin 2 Θ ] ( 1 + ρ ) ,
b r = N ( molecules cm - 3 ) 4 π d σ w d Ω d Ω .
E d ( λ , z + d z ) - E d ( λ , z ) d z = - ( a D + b b ) E d solar ( λ , z ) + b b E u solar ( λ , z ) - ( a r + b b ) E d r ( λ , z ) + b b E u r ( λ , z ) + μ r b r 2 E 0 ( λ , z ) .
E u ( λ , z + d z ) - E u ( λ , z ) d z = - ( a D + b b ) E u solar ( λ , z ) + b b E d solar ( λ , z ) - ( a r + b b ) E u r ( λ , z ) + b b E d r ( λ , z ) + μ r b r 2 E 0 ( λ , z ) .
d E d solar ( λ , z ) d z = - ( a D + b b ) E d solar ( λ , z ) + b b E u solar ( λ , z ) ,
d E u solar ( λ , z ) d z = - ( a D + b b ) E u solar ( λ , z ) + b b E u solar ( λ , z ) ,
E d solar ( λ , z ) = E d solar ( λ , 0 ) exp [ - τ ( z ) ] ,
E u solar ( λ , z ) = E u solar ( λ , 0 ) exp [ - τ ( z ) ] .
E d solar ( λ , z ) = E d solar ( λ , 0 ) exp [ - K z ] .
d E d r ( λ , z ) d z = - ( a r + b b ) E d r ( λ , z ) + b b E u r ( λ , z ) + μ r b r 2 E 0 ( λ , z ) ,
d E u r ( λ , z ) d z = - ( a r + b b ) E u r ( λ , z ) + b b E d r ( λ , z ) + μ r b r 2 E 0 ( λ , z ) ,
E d r ( λ , z ) = r = 0 z K r 2 a r ( 1 + a r K r ) μ r b r 2 E 0 ( λ , r ) exp { - [ τ r ( z ) - τ r ( r ) ] } d r + r = z K r 2 a r ( 1 - a r K r ) μ r b r 2 E 0 ( λ , r ) exp { [ τ r ( z ) - τ r ( r ) ] } d r ,
E u r ( λ , z ) = r = 0 z K r 2 a r ( 1 + a r K r ) μ r b r 2 E 0 ( λ , r ) exp { - [ τ r ( z ) - τ r ( r ) ] } d r + r = z K r 2 a r ( 1 - a r K r ) μ r b r 2 E 0 ( λ , r ) exp { [ τ r ( z ) - τ r ( r ) ] } d r .
G + r = K r 2 a r ( 1 + a r K r ) and G - r = k r 2 a r ( 1 - a r K r ) .
G ± r = K r 2 a r ( 1 ± a r K r ) = 1 2 [ ( 1 + 2 b b a r ) 1 / 2 ± 1 ] ,
G + r 1 + b b 2 a r and G - r b b 2 a r .
E 0 ( λ , z ) = E 0 ( λ , 0 ) exp ( - K z ) ,
E u r = r = z G + r b r 2 1 2 E 0 ( λ , r ) exp [ K r ( z - r ) ] d r + r = 0 z G - r b r 2 1 2 E 0 ( λ , r ) exp [ - K r ( z - r ) ] d r = b r 4 E 0 ( λ , 0 ) [ G + r exp ( - K z ) K r + K + G - r exp ( - K z ) - exp ( - K r z ) K r - K ] .
E d r = r = z G - r b r 2 1 2 E 0 ( λ , r ) exp [ K r ( z - r ) ] d r + r = 0 z G + r b r 2 1 2 E 0 ( λ , r ) exp [ - K r ( z - r ) ] d r = b r 4 E 0 ( λ , 0 ) [ G - r exp ( - K z ) K r + K + G + r exp ( - K z ) - exp ( - K r z ) K r - K ] .
E u ( λ , z ) = E u solar ( λ , z ) + E u r ( λ , z ) = E u solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) × [ G + r exp ( - K z ) K r + K + G - r exp ( - K z ) - exp ( - K r z ) K r - K ] .
E d ( λ , z ) = E d solar ( λ , z ) + E d r ( λ , z ) = E d solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) × [ G - r exp ( - K z ) K r + K + G + r exp ( - K z ) - exp ( - K r z ) K r - K ] .
R 0 = E u solar ( λ , z ) E d solar ( λ , z ) .
R ( λ , z ) = E u ( λ , z ) E d ( λ , z ) = E u solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) { G + r exp ( - K z ) K r + K + G - r [ exp ( - K z ) - exp ( - K r z ) ] K r - K } E d solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) { G - r exp ( - K z ) K r + K + G + r [ exp ( - K z ) - exp ( - K r z ) ] K r - K } .
G - r = b b 2 a r R 0 r and G + r = 1 + b b 2 a r 1 ,
R ( λ , z ) R 0 E d solar ( λ , 0 ) exp [ - ( K - K ) z ] + b r 4 E 0 ( λ , 0 ) { 1 K r + K + R 0 r 1 - exp [ - K r - K ) z ] K r - K } E d solar ( λ , 0 ) exp [ - ( K - K ) z ] + b r 4 E 0 ( λ , 0 ) { R 0 r 1 K r + K + R 0 r 1 - exp [ - K r - K ) z ] K r - K } .
R ( λ , z ) b r 4 E 0 ( λ , 0 ) { 1 K r + K + R 0 r 1 K r - K } b r 4 E 0 ( λ , 0 ) { R 0 r 1 K r + K + 1 K r - K } ( K r - K K r + K ) + R 0 r 1 + R 0 r ( K r - K K r + K ) K r - K K r + K 1.5 K - K 1.5 K + K .
B = [ b r 4 E 0 ( λ , 0 ) E d solar ( λ , 0 ) ] - 1 , R ( λ , z 0 ) R 0 + 1 - R 0 R 0 r B ( K r + K ) + R 0 r R 0 + 1 B ( K r + K ) [ R 0 R 0 r 1 and R 0 r B ( K r + K ) ] R 0 + 1 B ( 1.5 K + K ) .
E u ( λ , z ) = E u solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) × { G + r + exp ( - K z ) K r + K + G - r [ exp ( - K z ) - exp ( - K r z ) ] K r - K } .
K u ( λ , z ) = - 1 E u ( λ , z ) d E u ( λ , z ) d z = - - K R 0 E d solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) { - K G + r exp ( - K z ) K r + K + G - r [ - K exp ( - K z ) + K r exp ( - K r z ) ] K r - K } R 0 E d solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) { G + r exp ( - K z ) K r + K + G - r [ exp ( - K z ) - exp ( - K r z ) ] K r - K } .
K u ( λ , z ) = ( 4 E d solar ( λ , 0 ) ( K r - K ) ( K r + K ) R 0 K exp ( - K z ) b r E 0 ( λ , 0 ) ) + { G + r K ( K r - K ) exp ( - K z ) + G - r ( K r + K ) [ K exp ( - K z ) - K r exp ( - K r z ) ] } ( 4 E d solar ( λ , 0 ) ( K r - K ) ( K r + K ) R 0 K exp ( - K z ) b r E 0 ( λ , 0 ) ) + { G + r ( K r - K ) exp ( - K z ) + G - r ( K r + K ) [ exp ( - K z ) - exp ( - K r z ) ] } .
B 4 E d solar ( λ , 0 ) b r E 0 ( λ , 0 ) ,
K u ( λ , z ) = K - ( K - K ) × { 1 + [ B ( 1.5 K - K ) - G - r R 0 exp ( - 0.5 K z ) ] exp ( - Δ K z ) G - r R 0 + G + r ( 1.5 K - K ) R 0 ( 1.5 K + K ) } - 1 .
K u ( λ , z ) K - ( K - K ) { 1 + [ B ( 1.5 K - K ) - R 0 r R 0 ] e l 3 R 0 r R 0 + ( 1.5 K - K ) R 0 ( 1.5 K + K ) } - 1 .
B ( 1.5 K - K ) R 0 r R 0 and ( 1.5 K - K ) R 0 ( 1.5 K + K ) R 0 r R 0 , K u ( λ , z = 0 ) K - ( K - K ) [ 1 1 + B R 0 ( 1.5 K + K ) ] .
[ 1 1 + B R 0 ( 1.5 K + K ) ] [ 1 ( 1 + 1.3 × 10 4 ) 0.002 ( 1.5 × 0.158 + 0.02 ) ] 0.13 , K u ( λ , z = 0 ) 0.87 K + 0.13 K .
E d ( λ , z ) = E d solar ( λ , z ) = E d solar ( λ , 0 ) exp ( - K z ) + B r 4 E 0 ( λ , 0 ) { G - r exp ( - K z ) K r + K + G + r [ exp ( - K z ) - exp ( - K z ) ] K r - K } .
K d ( λ , z ) = - 1 E d ( λ , z ) d E d ( λ , z ) d z = - - K E d solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) { - K G - r exp ( - K z ) K r + K + G + r [ - K exp ( - K z ) + K r exp ( - K z ) ] K r - K } E d solar ( λ , 0 ) exp ( - K z ) + b r 4 E 0 ( λ , 0 ) { G - r exp ( - K z ) K r + K + G + r [ exp ( - K z ) - exp ( - K r z ) ] K r - K } .
K d ( λ , z ) = K - ( K - K ) × { 1 + [ B ( 1.5 K - K ) - G + r exp ( - 0.5 K z ) ] exp ( - Δ K z ) G + r + G - r ( 1.5 K - K ) ( 1.5 K + K ) } - 1 .
K d ( λ , z 0 ) K - ( K - K ) { 1 + [ B ( 1.5 K - K ) - 1 ] 1 + ( 1.5 K - K ) ( 1.5 K + K ) } - 1 K - 2 B ( 1 - K K ) .
K s [ z , λ ; h ( λ ) ] = 0 K ( λ ) h ( λ ) exp ( - K ( λ ) z ) d λ 0 h ( λ ) exp ( - K ( λ ) z ) λ .

Metrics