Abstract

We present a technique for nondestructive testing based on phase shifting TV holography and digital image processing. With this technique we calculate the phase modulation of the object light caused by object deformation. The resulting deformation phase image is smoothed to obtain a better signal-to-noise ratio. Smoothing is done by a new low pass filtering procedure we call phase shifting convolution. This procedure is based on smoothing of two phase images: the original phase image and a second image obtained by spatial phase shift of the original phase image. By combining the two smoothed images we obtain an image without smoothing errors close to the 2π phase ambiguities in the deformation phase image. To detect surface areas with local inhomogeneous deformations indicating material defects, we calculate and display the deformation phase gradients. Examples with testing of composite materials are shown.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. J. Løkberg, “Electronic Speckle Pattern Interferometry,” Phys. Technol. 11, 16–22 (1980).
    [CrossRef]
  2. R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Pr., London, 1983), pp. 165–197.
  3. O. J. Løkberg, G. Å. Slettemoen, “Basic Electronic Speckle Pattern Interferometry,” in Applied Optics and Optical Engineering, R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1987), pp. 455–504.
  4. O. J. Løkberg, J. T. Malmo, “Detection of Defects in Composite Materials by TV Holography,” Non-Destr. Test Guilford Engl. 21, 223–228 (1988).
  5. J. N. Butters, “Application of ESPI to NDT,” Opt. Laser Technol. 9, 117–123 (1977).
    [CrossRef]
  6. R. K. Erf, Ed., Holographic Nondestructive Testing (Academic, New York, 1974).
  7. B. P. Holownia, “Non-Destructive Testing of Overlap Shear Joints Using Electronic Speckle Pattern Interferometry,” Opt. Lasers Eng. 6, 79–90 (1985).
    [CrossRef]
  8. K. A. Stetson, W. R. Brohinsky, “Electro-Optic Holography System for Vibration Analysis and Nondestructive Testing,” Opt. Eng. 26, 1234–1239 (1987).
    [CrossRef]
  9. C. Creath, “Phase-Shifting Speckle Interferometry,” Appl. Opt. 24, 3053–3058 (1985).
    [CrossRef] [PubMed]
  10. D. W. Robinson, D. C. Williams, “Digital Phase Stepping Speckle Interferometry,” Opt. Comm. 57, 26–30 (1986).
    [CrossRef]
  11. P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393–396 (1982).
    [CrossRef]
  12. D. W. Robinson, “Automatic Fringe Analysis with a Computer Image-Processing System,” Appl. Opt. 22, 2169–2176 (1983).
    [CrossRef] [PubMed]
  13. G. T. Reid, “Automatic Fringe Pattern Analysis: a Review,” Opt. Laser Technol. 7, 37–68 (1986/1987).
  14. C. Koliopoulos, “Interferometric Optical Phase Measurement Techniques,” Ph.D. Dissertation, Optical Sciences Center, U. Arizona (1981).
  15. S. Nakadate, H. Saito, “Fringe Scanning Speckle-Pattern Interferometry,” Appl. Opt. 24, 2172–2180 (1985).
    [CrossRef] [PubMed]
  16. P. Hariharan, “Quasi-Heterodyne Hologram Interferometry,” Opt. Eng. 24, 632–638 (1985).
  17. M. Chang, C.-P. Hu, P. Lam, J. C. Wyant, “High Precision Deformation Measurement by Digital Phase Shifting Holographic Interferometry,” Appl. Opt. 24, 3780–3783 (1985).
    [CrossRef] [PubMed]
  18. D. Kerr, J. Tyrer, “Use of High Resolution Real-Time Image Processing Techniques in Generation and Analysis of ESPI Fringe Patterns,” Opt. Lasers Eng. 8, 109–121 (1988).
    [CrossRef]
  19. C. A. Sciammarella, “Computer Aided Fringe Pattern Analysis,” in Proceedings, Sixth International Congress on Experimental Mechanics, (Society for Experimental Mechanics, Inc. (SEM), Ct., Portland, Or., 1988), pp. 668–675.
  20. K. Creath, G. Slettemoen, “Vibration-Observation Techniques for Digital Speckle-Pattern Interferometry,” J. Opt. Soc. Am. A 2, 1629–1636 (1985).
    [CrossRef]
  21. E. Vikhagen, “Vibration Measurement Using Phase Shifting TV-Holography and Digital Image Processing,” Opt. Commun. 69, 214–218 (1989).
    [CrossRef]
  22. R. C. Gonzales, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1987).
  23. S. L. Toh, F. S. Chau, H. M. Shang, C. J. Tay, “Flaw Detection in Composites Using Shearography,” in Proceedings, Sixth International Conference on Composite Materials & Second European Conference on Composite Materials (ICCM&ECCM) (Elsevier Applied Science Publishers LTD (Essex, England), Imperial College of Science and Technology, London, UK, 1987), pp. 1341–1348.
  24. G. Slettemoen, “Electronic Speckle Pattern Interferometric System Based on a Speckle Reference Beam,” Appl. Opt. 19, 616–623 (1980).
    [CrossRef] [PubMed]

1989 (1)

E. Vikhagen, “Vibration Measurement Using Phase Shifting TV-Holography and Digital Image Processing,” Opt. Commun. 69, 214–218 (1989).
[CrossRef]

1988 (2)

D. Kerr, J. Tyrer, “Use of High Resolution Real-Time Image Processing Techniques in Generation and Analysis of ESPI Fringe Patterns,” Opt. Lasers Eng. 8, 109–121 (1988).
[CrossRef]

O. J. Løkberg, J. T. Malmo, “Detection of Defects in Composite Materials by TV Holography,” Non-Destr. Test Guilford Engl. 21, 223–228 (1988).

1987 (1)

K. A. Stetson, W. R. Brohinsky, “Electro-Optic Holography System for Vibration Analysis and Nondestructive Testing,” Opt. Eng. 26, 1234–1239 (1987).
[CrossRef]

1986 (1)

D. W. Robinson, D. C. Williams, “Digital Phase Stepping Speckle Interferometry,” Opt. Comm. 57, 26–30 (1986).
[CrossRef]

1985 (6)

1983 (1)

1982 (1)

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

1980 (2)

1977 (1)

J. N. Butters, “Application of ESPI to NDT,” Opt. Laser Technol. 9, 117–123 (1977).
[CrossRef]

Brohinsky, W. R.

K. A. Stetson, W. R. Brohinsky, “Electro-Optic Holography System for Vibration Analysis and Nondestructive Testing,” Opt. Eng. 26, 1234–1239 (1987).
[CrossRef]

Brown, N.

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

Butters, J. N.

J. N. Butters, “Application of ESPI to NDT,” Opt. Laser Technol. 9, 117–123 (1977).
[CrossRef]

Chang, M.

Chau, F. S.

S. L. Toh, F. S. Chau, H. M. Shang, C. J. Tay, “Flaw Detection in Composites Using Shearography,” in Proceedings, Sixth International Conference on Composite Materials & Second European Conference on Composite Materials (ICCM&ECCM) (Elsevier Applied Science Publishers LTD (Essex, England), Imperial College of Science and Technology, London, UK, 1987), pp. 1341–1348.

Creath, C.

Creath, K.

Gonzales, R. C.

R. C. Gonzales, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1987).

Hariharan, P.

P. Hariharan, “Quasi-Heterodyne Hologram Interferometry,” Opt. Eng. 24, 632–638 (1985).

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

Holownia, B. P.

B. P. Holownia, “Non-Destructive Testing of Overlap Shear Joints Using Electronic Speckle Pattern Interferometry,” Opt. Lasers Eng. 6, 79–90 (1985).
[CrossRef]

Hu, C.-P.

Jones, R.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Pr., London, 1983), pp. 165–197.

Kerr, D.

D. Kerr, J. Tyrer, “Use of High Resolution Real-Time Image Processing Techniques in Generation and Analysis of ESPI Fringe Patterns,” Opt. Lasers Eng. 8, 109–121 (1988).
[CrossRef]

Koliopoulos, C.

C. Koliopoulos, “Interferometric Optical Phase Measurement Techniques,” Ph.D. Dissertation, Optical Sciences Center, U. Arizona (1981).

Lam, P.

Løkberg, O. J.

O. J. Løkberg, J. T. Malmo, “Detection of Defects in Composite Materials by TV Holography,” Non-Destr. Test Guilford Engl. 21, 223–228 (1988).

O. J. Løkberg, “Electronic Speckle Pattern Interferometry,” Phys. Technol. 11, 16–22 (1980).
[CrossRef]

O. J. Løkberg, G. Å. Slettemoen, “Basic Electronic Speckle Pattern Interferometry,” in Applied Optics and Optical Engineering, R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1987), pp. 455–504.

Malmo, J. T.

O. J. Løkberg, J. T. Malmo, “Detection of Defects in Composite Materials by TV Holography,” Non-Destr. Test Guilford Engl. 21, 223–228 (1988).

Nakadate, S.

Oreb, B. F.

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

Reid, G. T.

G. T. Reid, “Automatic Fringe Pattern Analysis: a Review,” Opt. Laser Technol. 7, 37–68 (1986/1987).

Robinson, D. W.

D. W. Robinson, D. C. Williams, “Digital Phase Stepping Speckle Interferometry,” Opt. Comm. 57, 26–30 (1986).
[CrossRef]

D. W. Robinson, “Automatic Fringe Analysis with a Computer Image-Processing System,” Appl. Opt. 22, 2169–2176 (1983).
[CrossRef] [PubMed]

Saito, H.

Sciammarella, C. A.

C. A. Sciammarella, “Computer Aided Fringe Pattern Analysis,” in Proceedings, Sixth International Congress on Experimental Mechanics, (Society for Experimental Mechanics, Inc. (SEM), Ct., Portland, Or., 1988), pp. 668–675.

Shang, H. M.

S. L. Toh, F. S. Chau, H. M. Shang, C. J. Tay, “Flaw Detection in Composites Using Shearography,” in Proceedings, Sixth International Conference on Composite Materials & Second European Conference on Composite Materials (ICCM&ECCM) (Elsevier Applied Science Publishers LTD (Essex, England), Imperial College of Science and Technology, London, UK, 1987), pp. 1341–1348.

Slettemoen, G.

Slettemoen, G. Å.

O. J. Løkberg, G. Å. Slettemoen, “Basic Electronic Speckle Pattern Interferometry,” in Applied Optics and Optical Engineering, R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1987), pp. 455–504.

Stetson, K. A.

K. A. Stetson, W. R. Brohinsky, “Electro-Optic Holography System for Vibration Analysis and Nondestructive Testing,” Opt. Eng. 26, 1234–1239 (1987).
[CrossRef]

Tay, C. J.

S. L. Toh, F. S. Chau, H. M. Shang, C. J. Tay, “Flaw Detection in Composites Using Shearography,” in Proceedings, Sixth International Conference on Composite Materials & Second European Conference on Composite Materials (ICCM&ECCM) (Elsevier Applied Science Publishers LTD (Essex, England), Imperial College of Science and Technology, London, UK, 1987), pp. 1341–1348.

Toh, S. L.

S. L. Toh, F. S. Chau, H. M. Shang, C. J. Tay, “Flaw Detection in Composites Using Shearography,” in Proceedings, Sixth International Conference on Composite Materials & Second European Conference on Composite Materials (ICCM&ECCM) (Elsevier Applied Science Publishers LTD (Essex, England), Imperial College of Science and Technology, London, UK, 1987), pp. 1341–1348.

Tyrer, J.

D. Kerr, J. Tyrer, “Use of High Resolution Real-Time Image Processing Techniques in Generation and Analysis of ESPI Fringe Patterns,” Opt. Lasers Eng. 8, 109–121 (1988).
[CrossRef]

Vikhagen, E.

E. Vikhagen, “Vibration Measurement Using Phase Shifting TV-Holography and Digital Image Processing,” Opt. Commun. 69, 214–218 (1989).
[CrossRef]

Williams, D. C.

D. W. Robinson, D. C. Williams, “Digital Phase Stepping Speckle Interferometry,” Opt. Comm. 57, 26–30 (1986).
[CrossRef]

Wintz, P.

R. C. Gonzales, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1987).

Wyant, J. C.

Wykes, C.

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Pr., London, 1983), pp. 165–197.

Appl. Opt. (5)

J. Opt. Soc. Am. A (1)

Non-Destr. Test Guilford Engl. (1)

O. J. Løkberg, J. T. Malmo, “Detection of Defects in Composite Materials by TV Holography,” Non-Destr. Test Guilford Engl. 21, 223–228 (1988).

Opt. Comm. (1)

D. W. Robinson, D. C. Williams, “Digital Phase Stepping Speckle Interferometry,” Opt. Comm. 57, 26–30 (1986).
[CrossRef]

Opt. Commun. (2)

P. Hariharan, B. F. Oreb, N. Brown, “A Digital Phase-Measurement System for Real-Time Holographic Interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

E. Vikhagen, “Vibration Measurement Using Phase Shifting TV-Holography and Digital Image Processing,” Opt. Commun. 69, 214–218 (1989).
[CrossRef]

Opt. Eng. (2)

P. Hariharan, “Quasi-Heterodyne Hologram Interferometry,” Opt. Eng. 24, 632–638 (1985).

K. A. Stetson, W. R. Brohinsky, “Electro-Optic Holography System for Vibration Analysis and Nondestructive Testing,” Opt. Eng. 26, 1234–1239 (1987).
[CrossRef]

Opt. Laser Technol. (2)

J. N. Butters, “Application of ESPI to NDT,” Opt. Laser Technol. 9, 117–123 (1977).
[CrossRef]

G. T. Reid, “Automatic Fringe Pattern Analysis: a Review,” Opt. Laser Technol. 7, 37–68 (1986/1987).

Opt. Lasers Eng. (2)

B. P. Holownia, “Non-Destructive Testing of Overlap Shear Joints Using Electronic Speckle Pattern Interferometry,” Opt. Lasers Eng. 6, 79–90 (1985).
[CrossRef]

D. Kerr, J. Tyrer, “Use of High Resolution Real-Time Image Processing Techniques in Generation and Analysis of ESPI Fringe Patterns,” Opt. Lasers Eng. 8, 109–121 (1988).
[CrossRef]

Phys. Technol. (1)

O. J. Løkberg, “Electronic Speckle Pattern Interferometry,” Phys. Technol. 11, 16–22 (1980).
[CrossRef]

Other (7)

R. Jones, C. Wykes, Holographic and Speckle Interferometry (Cambridge U. Pr., London, 1983), pp. 165–197.

O. J. Løkberg, G. Å. Slettemoen, “Basic Electronic Speckle Pattern Interferometry,” in Applied Optics and Optical Engineering, R. Shannon, J. C. Wyant, Eds. (Academic, New York, 1987), pp. 455–504.

R. K. Erf, Ed., Holographic Nondestructive Testing (Academic, New York, 1974).

C. Koliopoulos, “Interferometric Optical Phase Measurement Techniques,” Ph.D. Dissertation, Optical Sciences Center, U. Arizona (1981).

R. C. Gonzales, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1987).

S. L. Toh, F. S. Chau, H. M. Shang, C. J. Tay, “Flaw Detection in Composites Using Shearography,” in Proceedings, Sixth International Conference on Composite Materials & Second European Conference on Composite Materials (ICCM&ECCM) (Elsevier Applied Science Publishers LTD (Essex, England), Imperial College of Science and Technology, London, UK, 1987), pp. 1341–1348.

C. A. Sciammarella, “Computer Aided Fringe Pattern Analysis,” in Proceedings, Sixth International Congress on Experimental Mechanics, (Society for Experimental Mechanics, Inc. (SEM), Ct., Portland, Or., 1988), pp. 668–675.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Main principles of TV holography.

Fig. 2
Fig. 2

Pixel intensity I as a function of phase angle difference α′ between object and reference beams.

Fig. 3
Fig. 3

Unit vector r normally directed to the isophase curves.

Fig. 4
Fig. 4

(a) Image A, the calculated deformation phase β(x). (b) Image B, the phase distribution after spatial phase shift of image A.

Fig. 5
Fig. 5

(a) Image SA, the result after low pass filtering image A. (b) Image SB, the result after low pass filtering image B.

Fig. 6
Fig. 6

(a) Image SB′, the phase distribution after spatial phase shift of image SB. (b) The result after combining images SA and SB′.

Fig. 7
Fig. 7

Heating of a polymer laminate: (a) ordinary TV holographic fringes; (b) deformation phase β(x,y); (c) deformation phase β(x,y) after phase shifting convolution; (d) deformation phase gradients ∂β(x,y)/∂s. A material defect is revealed.

Fig. 8
Fig. 8

Triangular shaped object between plies in a laminate: (a) ordinary TV holographic fringes; (b) deformation phase β(x,y) after phase shifting convolution; (c) deformation phase gradients ∂β(x,y)/∂s; (d) isometric plot of the surface deformation.

Fig. 9
Fig. 9

Paper clip inside a polymer laminate. The clip is covered by two plies. (a) Deformation phase gradients ∂β(x,y)/∂s. (b) Isometric plot of the surface deformations.

Fig. 10
Fig. 10

Paper clip inside a polymer laminate. The clip is covered by twelve plies. (a) Deformation phase gradients ∂β(x,y)/∂s. (b) Isometric plot of the surface deformations.

Fig. 11
Fig. 11

Cellular structure in a honeycomb material: (a) ordinary TV holographic fringes and (b) deformation phase gradients ∂β(x,y)/∂s.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I o ( x , y ) + I a ( x , y ) cos [ α ( x , y ) ] ,
α ( x , y ) = arccos { [ I k ( x , y ) - I o ( x , y ) ] / I a ( x , y ) } ,
[ β ( x , y ) / x ] = β ( x , y ) - β ( x - 1 , y ) , [ β ( x , y ) / y ] = β ( x , y ) - β ( x , y - 1 ) .
β ( x , y ) / x = min ( [ β ( x , y ) / x ] 2 π - [ β ( x , y ) / x ] ) , β ( x , y ) / y = min ( [ β ( x , y ) / y ] 2 π - [ β ( x , y ) / y ] ) ,
β ( x , y ) / s = [ β ( x , y ) / x ] 2 + [ β ( x , y ) / y ] 2 .

Metrics