Abstract

Two-photon laser-induced fluorescence has been used to detect oxygen atoms in the gas phase above a heated, catalytically stabilized combustor. Excitation was at 226 nm and detection at 777 nm. Special care using the collection optics was necessary to avoid detector saturation from intense thermal emission background from the heated plate. The experimental configuration together with considerations of quenching collisions and photochemical production of oxygen atoms are described.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Pfefferle, W. C. Pfefferle, “Catalysis in Combustion,” Catal. Rev. Sci. Eng. 29, 219–267 (1987).
    [CrossRef]
  2. R. J. Cattolica, R. W. Schefer, “The Effect of Surface Chemistry on the Development of the [OH] in a Combustion Boundary Layer,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1982), p. 311.
    [CrossRef]
  3. G. P. Smith, M. J. Dyer, D. R. Crosley, “Laser-Induced Fluorescence Measurements of OH in Catalytic Combustion,” SRI International Report MP 87-057 (Mar.1987).
  4. L. D. Pfefferle, T. A. Griffin, M. Winter, “Planar Laser-Induced Fluorescence of OH in a Chemically Reacting Boundary Layer,” Appl. Opt. 27, 3197–3202 (1988).
    [CrossRef] [PubMed]
  5. L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
    [CrossRef]
  6. W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence in Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85–91 (1981); W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419–1429 (1982).
    [CrossRef] [PubMed]
  7. M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
    [CrossRef]
  8. A. W. Miziolek, M. A. DeWilde, “Multiphoton Photochemical and Collisional Effects During Oxygen-Atom Flame Detection,” Opt. Lett. 9, 390–392 (1984).
    [CrossRef] [PubMed]
  9. P. J. Dagdigian, B. E. Forch, A. W. Miziolek, “Collisional Transfer Between and Quenching of the 3p3P and 5P States of the Oxygen Atom,” Chem. Phys. Lett. 148, 299–308 (1988).
    [CrossRef]
  10. L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
    [CrossRef]
  11. A. G. Gaydon, H. G. Wolfhard, Flames (Chapman & Hall, London, 1979).
  12. J. E. M. Goldsmith, “Photochemical Effects in Two-Photon-Excited Fluorescence Detection of Atomic Oxygen in Flames,” Appl. Opt. 26, 3566–3572 (1987).
    [CrossRef] [PubMed]
  13. B. E. Forch, A. W. Miziolek, “Photochemical Ignition Studies. II. Oxygen-Atom Two-Photon Resonance Effects,” Technical Report BRL-TR-2740 (June1986).
  14. D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511–521 (1981).
    [CrossRef]
  15. U. Meier, K. Kohse-Höinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. lett. 126, 567–573 (1986).
    [CrossRef]
  16. N. L. Garland, D. R. Crosley, “On the Collisional Quenching of Electronically Excited OH, NH, and CH in Flames,” in Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1986), p. 1693.
  17. D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute Two-Photon Absorption and Three-Photon Ionization Cross Sections for Atomic Oxygen,” Phys. Rev. A 34, 185–198 (1986).
    [CrossRef] [PubMed]
  18. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-Induced Fluorescence of O(3p3P), O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames,” Opt. lett. 14, 767–769 (1989).
    [CrossRef] [PubMed]
  19. P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
    [CrossRef]
  20. L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

1989 (3)

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-Induced Fluorescence of O(3p3P), O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames,” Opt. lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

1988 (2)

P. J. Dagdigian, B. E. Forch, A. W. Miziolek, “Collisional Transfer Between and Quenching of the 3p3P and 5P States of the Oxygen Atom,” Chem. Phys. Lett. 148, 299–308 (1988).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, “Planar Laser-Induced Fluorescence of OH in a Chemically Reacting Boundary Layer,” Appl. Opt. 27, 3197–3202 (1988).
[CrossRef] [PubMed]

1987 (2)

1986 (2)

U. Meier, K. Kohse-Höinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. lett. 126, 567–573 (1986).
[CrossRef]

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute Two-Photon Absorption and Three-Photon Ionization Cross Sections for Atomic Oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

1984 (1)

1982 (1)

M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

1981 (2)

D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511–521 (1981).
[CrossRef]

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence in Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85–91 (1981); W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419–1429 (1982).
[CrossRef] [PubMed]

1972 (1)

P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Aldén, M.

M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Bamford, D. J.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute Two-Photon Absorption and Three-Photon Ionization Cross Sections for Atomic Oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Bischel, W. K.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute Two-Photon Absorption and Three-Photon Ionization Cross Sections for Atomic Oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence in Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85–91 (1981); W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419–1429 (1982).
[CrossRef] [PubMed]

Cattolica, R. J.

R. J. Cattolica, R. W. Schefer, “The Effect of Surface Chemistry on the Development of the [OH] in a Combustion Boundary Layer,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1982), p. 311.
[CrossRef]

Crosley, D. R.

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Laser-Induced Fluorescence of O(3p3P), O2, and NO near 226 nm: Photolytic Interferences and Simultaneous Excitation in Flames,” Opt. lett. 14, 767–769 (1989).
[CrossRef] [PubMed]

D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511–521 (1981).
[CrossRef]

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence in Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85–91 (1981); W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419–1429 (1982).
[CrossRef] [PubMed]

G. P. Smith, M. J. Dyer, D. R. Crosley, “Laser-Induced Fluorescence Measurements of OH in Catalytic Combustion,” SRI International Report MP 87-057 (Mar.1987).

N. L. Garland, D. R. Crosley, “On the Collisional Quenching of Electronically Excited OH, NH, and CH in Flames,” in Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1986), p. 1693.

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

Dagdigian, P. J.

P. J. Dagdigian, B. E. Forch, A. W. Miziolek, “Collisional Transfer Between and Quenching of the 3p3P and 5P States of the Oxygen Atom,” Chem. Phys. Lett. 148, 299–308 (1988).
[CrossRef]

DeWilde, M. A.

Dyer, M. J.

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

G. P. Smith, M. J. Dyer, D. R. Crosley, “Laser-Induced Fluorescence Measurements of OH in Catalytic Combustion,” SRI International Report MP 87-057 (Mar.1987).

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

Edner, H.

M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Forch, B. E.

P. J. Dagdigian, B. E. Forch, A. W. Miziolek, “Collisional Transfer Between and Quenching of the 3p3P and 5P States of the Oxygen Atom,” Chem. Phys. Lett. 148, 299–308 (1988).
[CrossRef]

B. E. Forch, A. W. Miziolek, “Photochemical Ignition Studies. II. Oxygen-Atom Two-Photon Resonance Effects,” Technical Report BRL-TR-2740 (June1986).

Garland, N. L.

N. L. Garland, D. R. Crosley, “On the Collisional Quenching of Electronically Excited OH, NH, and CH in Flames,” in Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1986), p. 1693.

Gaydon, A. G.

A. G. Gaydon, H. G. Wolfhard, Flames (Chapman & Hall, London, 1979).

Goldsmith, J. E. M.

Graström, P.

M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Griffin, T. A.

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, “Planar Laser-Induced Fluorescence of OH in a Chemically Reacting Boundary Layer,” Appl. Opt. 27, 3197–3202 (1988).
[CrossRef] [PubMed]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

Jeffries, J. B.

Jusinski, L. E.

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute Two-Photon Absorption and Three-Photon Ionization Cross Sections for Atomic Oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Just, T.

U. Meier, K. Kohse-Höinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. lett. 126, 567–573 (1986).
[CrossRef]

Kohse-Höinghaus, K.

U. Meier, K. Kohse-Höinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. lett. 126, 567–573 (1986).
[CrossRef]

Krupenie, P. H.

P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Meier, U.

U. Meier, K. Kohse-Höinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. lett. 126, 567–573 (1986).
[CrossRef]

Miziolek, A. W.

P. J. Dagdigian, B. E. Forch, A. W. Miziolek, “Collisional Transfer Between and Quenching of the 3p3P and 5P States of the Oxygen Atom,” Chem. Phys. Lett. 148, 299–308 (1988).
[CrossRef]

A. W. Miziolek, M. A. DeWilde, “Multiphoton Photochemical and Collisional Effects During Oxygen-Atom Flame Detection,” Opt. Lett. 9, 390–392 (1984).
[CrossRef] [PubMed]

B. E. Forch, A. W. Miziolek, “Photochemical Ignition Studies. II. Oxygen-Atom Two-Photon Resonance Effects,” Technical Report BRL-TR-2740 (June1986).

Perry, B. E.

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence in Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85–91 (1981); W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419–1429 (1982).
[CrossRef] [PubMed]

Pfefferle, L. D.

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, “Planar Laser-Induced Fluorescence of OH in a Chemically Reacting Boundary Layer,” Appl. Opt. 27, 3197–3202 (1988).
[CrossRef] [PubMed]

L. D. Pfefferle, W. C. Pfefferle, “Catalysis in Combustion,” Catal. Rev. Sci. Eng. 29, 219–267 (1987).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

Pfefferle, W. C.

L. D. Pfefferle, W. C. Pfefferle, “Catalysis in Combustion,” Catal. Rev. Sci. Eng. 29, 219–267 (1987).
[CrossRef]

Schefer, R. W.

R. J. Cattolica, R. W. Schefer, “The Effect of Surface Chemistry on the Development of the [OH] in a Combustion Boundary Layer,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1982), p. 311.
[CrossRef]

Smith, G. P.

G. P. Smith, M. J. Dyer, D. R. Crosley, “Laser-Induced Fluorescence Measurements of OH in Catalytic Combustion,” SRI International Report MP 87-057 (Mar.1987).

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

Svanberg, S.

M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Winter, M.

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, “Planar Laser-Induced Fluorescence of OH in a Chemically Reacting Boundary Layer,” Appl. Opt. 27, 3197–3202 (1988).
[CrossRef] [PubMed]

Wolfhard, H. G.

A. G. Gaydon, H. G. Wolfhard, Flames (Chapman & Hall, London, 1979).

Wysong, I. J.

Appl. Opt. (2)

Catal. Rev. Sci. Eng. (1)

L. D. Pfefferle, W. C. Pfefferle, “Catalysis in Combustion,” Catal. Rev. Sci. Eng. 29, 219–267 (1987).
[CrossRef]

Chem. Phys. Lett. (2)

W. K. Bischel, B. E. Perry, D. R. Crosley, “Two-Photon Laser-Induced Fluorescence in Oxygen and Nitrogen Atoms,” Chem. Phys. Lett. 82, 85–91 (1981); W. K. Bischel, B. E. Perry, D. R. Crosley, “Detection of Fluorescence from O and N Atoms Induced by Two-Photon Absorption,” Appl. Opt. 21, 1419–1429 (1982).
[CrossRef] [PubMed]

P. J. Dagdigian, B. E. Forch, A. W. Miziolek, “Collisional Transfer Between and Quenching of the 3p3P and 5P States of the Oxygen Atom,” Chem. Phys. Lett. 148, 299–308 (1988).
[CrossRef]

U. Meier, K. Kohse-Höinghaus, T. Just, “H and O Atom Detection for Combustion Applications: Study of Quenching and Laser Photolysis Effects,” Chem. Phys. lett. 126, 567–573 (1986).
[CrossRef]

Combust. Flame (2)

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. II. Oxygen Atom Measurements,” Combust. Flame 76, 339–349 (1989).
[CrossRef]

L. D. Pfefferle, T. A. Griffin, M. Winter, M. J. Dyer, D. R. Crosley, “The Influence of Catalytic Activity on the Gas Phase Ignition of Boundary Layer Flows. Part I. Hydroxyl Radical Measurements in Ethane/Air Mixtures,” Combust. Flame 76, 325–338 (1989).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

P. H. Krupenie, “The Spectrum of Molecular Oxygen,” J. Phys. Chem. Ref. Data 1, 423–534 (1972).
[CrossRef]

Opt. Commun. (1)

M. Aldén, H. Edner, P. Graström, S. Svanberg, “Two-Photon Excitation of Atomic Oxygen in a Flame,” Opt. Commun. 42, 244–246 (1982).
[CrossRef]

Opt. Eng. (1)

D. R. Crosley, “Collisional Effects on Laser-Induced Fluorescence Flame Measurements,” Opt. Eng. 20, 511–521 (1981).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

D. J. Bamford, L. E. Jusinski, W. K. Bischel, “Absolute Two-Photon Absorption and Three-Photon Ionization Cross Sections for Atomic Oxygen,” Phys. Rev. A 34, 185–198 (1986).
[CrossRef] [PubMed]

Other (6)

L. D. Pfefferle, T. A. Griffin, M. J. Dyer, D. R. Crosley, G. P. Smith, “Hydroxyl Radical and Oxygen Atom Concentrations over a Flat Plate Combustor,” SRI International Report MP 88-024 (Feb.1988).

N. L. Garland, D. R. Crosley, “On the Collisional Quenching of Electronically Excited OH, NH, and CH in Flames,” in Twenty-first Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1986), p. 1693.

B. E. Forch, A. W. Miziolek, “Photochemical Ignition Studies. II. Oxygen-Atom Two-Photon Resonance Effects,” Technical Report BRL-TR-2740 (June1986).

A. G. Gaydon, H. G. Wolfhard, Flames (Chapman & Hall, London, 1979).

R. J. Cattolica, R. W. Schefer, “The Effect of Surface Chemistry on the Development of the [OH] in a Combustion Boundary Layer,” in Nineteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1982), p. 311.
[CrossRef]

G. P. Smith, M. J. Dyer, D. R. Crosley, “Laser-Induced Fluorescence Measurements of OH in Catalytic Combustion,” SRI International Report MP 87-057 (Mar.1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy level diagram for the LIF scheme. Two photons at 226 nm are absorbed, elevating the oxygen atoms to the 3p3P state. From there they emit at 845 nm, undergo collisional transfer to the 3p5P state, or are collisionally quenched to other levels (not indicated in the figure). The 5P state fluorescences to the 5S state and is also collisionally quenched. This 777-nm radiation forms the detected signal in these experiments.

Fig. 2
Fig. 2

Schematic diagram for the apparatus in its final configuration. The plate itself is the angled portion of the appratus indicated, and the fuel/air flow is out of the plane of the paper. H.R. and H.T. denote high reflectivity and high transmissivity, respectively. The variable slit shown is crossed with that of the monocromator to form pointwise resolution; the depth of field along the beam is controlled by this variable slit. Not shown are other optical steering and alignment aids such as prisms, apertures, etc., or the flow, gas metering, and exhaust system for the catalytic combustor apparatus.

Fig. 3
Fig. 3

Oxygen atom profiles with the heated, catalytically active platinum-coated surface, burning methane/air at ϕ = 0.55. These profiles are taken 40 mm above the bottom of the plate, where the boundary layer is well developed. Oxyen atoms can be seen in the gas phase out from the plate at low temperatures, indicating a surface source. At 1615 K and above, a second source term in the gas phase reverses the surface gradient of the concentration. At yet higher temperature, this secondary peak broadens and extends further into the boundary layer. The vertical scale is in arbitrary units of oxygen atom concentration; one unit corresponds to ~1013 oxygen atoms per cm3. The scale is the same for all panels here and in Fig. 4.

Fig. 4
Fig. 4

As in Fig. 3, but for a heated but catalytically inactive quartz surface. As in the two higher temperature panels of Fig. 3, ignition in the gas phase is evidenced by a gas phase source term for the atoms. For quartz, no oxygen atoms were detectable before ignition occurred. In this case, ignition is at a slightly lower temperature than for platinum, because the latter surface catalytically depletes the fuel at the surface. For an equivalence ratio ϕ < 0.3, the platinum surface promotes ignition; for further discussion see Refs. 5 and 10.

Metrics