Abstract

The optical distortions of transmissive optics for high power CO2 lasers have been measured by the interference of a probe He–Ne laser beam. The change of interference fringes is observed by a video camera when the sample is irradiated by a cw high power CO2 laser. From the change of fringe pattern, the optical distortion is obtained and the spatial distribution of the temperature rise is derived. Thermal expansion and thermal change of the optics cause optical distortions. Both factors have to be added to large thermal lensing effects for ZnSe optics but they are small for KCl optics.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Deutsch, “Laser Window Materials—An Overview,” J. Electron. Mater. 4, 663 (1975).
    [CrossRef]
  2. P. Miles, “High Transparency Infrared Materials: A Technology Update,” Opt. Eng. 15, 451 (1976).
    [CrossRef]
  3. G. H. Sherman, G. F. Frazier, “Transmissive Optics for High Power Carbon Dioxide Lasers: Practical Considerations,” Opt. Eng. 17, 225 (1978).
    [CrossRef]
  4. T. Miyata, “R&D of Optics for High Power CO2 Lasers in Japanese National Program,” Proc. Soc. Photo-Opt. Instrum. Eng. 650, 131 (1986).
  5. H. Takahashi, M. Kimura, R. Sano, “Automatic Reflectivity Map Measurement of High Power CO2 Laser Optics,” Opt. Laser Technol. 21, 37 (1989).
    [CrossRef]
  6. H. B. Rosenstock, “Absorption Measurements by Laser Calorimetry,” J. Appl. Phys. 50, 102 (1979).
    [CrossRef]
  7. M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
    [CrossRef]
  8. J. S. Loomis, E. G. Bernal, “Laser Induced Damage in Optical Materials,” NBS Special Publication 435 (1975), p. 126.
  9. J. A. Detrio, J. A. Fox, J. M. O’Hara, “Laser Induced Damage in Optical Materials,” NBS Special Publication 568 (1979), p. 73.

1989 (1)

H. Takahashi, M. Kimura, R. Sano, “Automatic Reflectivity Map Measurement of High Power CO2 Laser Optics,” Opt. Laser Technol. 21, 37 (1989).
[CrossRef]

1986 (1)

T. Miyata, “R&D of Optics for High Power CO2 Lasers in Japanese National Program,” Proc. Soc. Photo-Opt. Instrum. Eng. 650, 131 (1986).

1979 (1)

H. B. Rosenstock, “Absorption Measurements by Laser Calorimetry,” J. Appl. Phys. 50, 102 (1979).
[CrossRef]

1978 (1)

G. H. Sherman, G. F. Frazier, “Transmissive Optics for High Power Carbon Dioxide Lasers: Practical Considerations,” Opt. Eng. 17, 225 (1978).
[CrossRef]

1976 (1)

P. Miles, “High Transparency Infrared Materials: A Technology Update,” Opt. Eng. 15, 451 (1976).
[CrossRef]

1975 (1)

T. F. Deutsch, “Laser Window Materials—An Overview,” J. Electron. Mater. 4, 663 (1975).
[CrossRef]

1974 (1)

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
[CrossRef]

Bernal, E. G.

J. S. Loomis, E. G. Bernal, “Laser Induced Damage in Optical Materials,” NBS Special Publication 435 (1975), p. 126.

Boyer, L. L.

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
[CrossRef]

Davisson, J. W.

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
[CrossRef]

Detrio, J. A.

J. A. Detrio, J. A. Fox, J. M. O’Hara, “Laser Induced Damage in Optical Materials,” NBS Special Publication 568 (1979), p. 73.

Deutsch, T. F.

T. F. Deutsch, “Laser Window Materials—An Overview,” J. Electron. Mater. 4, 663 (1975).
[CrossRef]

Fox, J. A.

J. A. Detrio, J. A. Fox, J. M. O’Hara, “Laser Induced Damage in Optical Materials,” NBS Special Publication 568 (1979), p. 73.

Frazier, G. F.

G. H. Sherman, G. F. Frazier, “Transmissive Optics for High Power Carbon Dioxide Lasers: Practical Considerations,” Opt. Eng. 17, 225 (1978).
[CrossRef]

Hass, M.

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
[CrossRef]

Kimura, M.

H. Takahashi, M. Kimura, R. Sano, “Automatic Reflectivity Map Measurement of High Power CO2 Laser Optics,” Opt. Laser Technol. 21, 37 (1989).
[CrossRef]

Klein, P. H.

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
[CrossRef]

Loomis, J. S.

J. S. Loomis, E. G. Bernal, “Laser Induced Damage in Optical Materials,” NBS Special Publication 435 (1975), p. 126.

Miles, P.

P. Miles, “High Transparency Infrared Materials: A Technology Update,” Opt. Eng. 15, 451 (1976).
[CrossRef]

Miyata, T.

T. Miyata, “R&D of Optics for High Power CO2 Lasers in Japanese National Program,” Proc. Soc. Photo-Opt. Instrum. Eng. 650, 131 (1986).

O’Hara, J. M.

J. A. Detrio, J. A. Fox, J. M. O’Hara, “Laser Induced Damage in Optical Materials,” NBS Special Publication 568 (1979), p. 73.

Rosenstock, H. B.

H. B. Rosenstock, “Absorption Measurements by Laser Calorimetry,” J. Appl. Phys. 50, 102 (1979).
[CrossRef]

Sano, R.

H. Takahashi, M. Kimura, R. Sano, “Automatic Reflectivity Map Measurement of High Power CO2 Laser Optics,” Opt. Laser Technol. 21, 37 (1989).
[CrossRef]

Sherman, G. H.

G. H. Sherman, G. F. Frazier, “Transmissive Optics for High Power Carbon Dioxide Lasers: Practical Considerations,” Opt. Eng. 17, 225 (1978).
[CrossRef]

Takahashi, H.

H. Takahashi, M. Kimura, R. Sano, “Automatic Reflectivity Map Measurement of High Power CO2 Laser Optics,” Opt. Laser Technol. 21, 37 (1989).
[CrossRef]

J. Appl. Phys. (2)

H. B. Rosenstock, “Absorption Measurements by Laser Calorimetry,” J. Appl. Phys. 50, 102 (1979).
[CrossRef]

M. Hass, J. W. Davisson, P. H. Klein, L. L. Boyer, “Infrared Absorption in Low-Loss KCl Single Crystals near 10.6 μm,” J. Appl. Phys. 45, 3959 (1974).
[CrossRef]

J. Electron. Mater. (1)

T. F. Deutsch, “Laser Window Materials—An Overview,” J. Electron. Mater. 4, 663 (1975).
[CrossRef]

Opt. Eng. (2)

P. Miles, “High Transparency Infrared Materials: A Technology Update,” Opt. Eng. 15, 451 (1976).
[CrossRef]

G. H. Sherman, G. F. Frazier, “Transmissive Optics for High Power Carbon Dioxide Lasers: Practical Considerations,” Opt. Eng. 17, 225 (1978).
[CrossRef]

Opt. Laser Technol. (1)

H. Takahashi, M. Kimura, R. Sano, “Automatic Reflectivity Map Measurement of High Power CO2 Laser Optics,” Opt. Laser Technol. 21, 37 (1989).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

T. Miyata, “R&D of Optics for High Power CO2 Lasers in Japanese National Program,” Proc. Soc. Photo-Opt. Instrum. Eng. 650, 131 (1986).

Other (2)

J. S. Loomis, E. G. Bernal, “Laser Induced Damage in Optical Materials,” NBS Special Publication 435 (1975), p. 126.

J. A. Detrio, J. A. Fox, J. M. O’Hara, “Laser Induced Damage in Optical Materials,” NBS Special Publication 568 (1979), p. 73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the experimental setup for interferometric measurements of optical distortion.

Fig. 2
Fig. 2

Photographs of interference fringes of the ZnSe optic at irradiation of different power CO2 lasers: (a) before irradiation, (b) at irradiation of 200 W, (c) at irradiation of 650 W, (d) at irradiation of 1050 W, (e) after irradiation ended.

Fig. 3
Fig. 3

Spatial distribution of the temperature rise derived from Fig. 2(d).

Fig. 4
Fig. 4

Spatial distribution of the temperature rise on one axis of a ZnSe optic derived from Fig. 2(d). The solid line is the measured value; the dashed line is the calculated value.

Fig. 5
Fig. 5

Peak temperature rise of a ZnSe optic as a function of irradiated power.

Fig. 6
Fig. 6

Photograph of the observed permanent crosshatch distortion.

Fig. 7
Fig. 7

Irradiation power density at which the permanent crosshatch distortion is observed as a function of the percentage absorption: ○, no crosshatch observed; ×, crosshatch observed. The solid line corresponds to an absorption power density of 1.1 W/cm2.

Fig. 8
Fig. 8

Spatial distribution of the permanent deformation on one axis of a KCl optic: ○, irradiation power density of 500 W/cm2; •, irradiation power density of 600 W/cm2.

Fig. 9
Fig. 9

Permanent deformation as a function of the irradiated power density for several KCl specimen optics: ○,×,Δ, single crystal; □, polycrystal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ( 2 n d ) = 2 ( d n / d T + n α ) d Δ T ,
Δ ( 2 n d ) / λ = 1 . 22 Δ T .
T = T 0 + β I 4 κ ( r 0 2 r 2 ) + β I 2 κ r 0 2 ln R r 0 ( if 0 r r 0 ) ,
T = T 0 + β I 2 κ r 0 2 ln R r ( if r 0 r R ) ,
Δ ( n l ) = [ d n / d T + ( n 1 ) α ] l Δ T .

Metrics