Abstract

We designed an improved wedge shaped cell for measuring Lambert absorption coefficient spectra α(ν) of highly absorbent liquids. The design allows for accurate determination of the apex angle of the wedge, sealing the cell, and injection of the liquid without disassembling the cell. We measured α(ν) for water through the 500–12,500-cm−1 wavenumber region to determine the range of α(ν) for which the cell provided accurate measurements. We then determined the imaginary part of the complex refractive index N(ν) = n(ν) + ik(ν) from α(ν) and used Kramers-Kronig methods to compute n(ν) from k(ν).

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Robertson, D. Williams, “Lambert Absorption Coefficients of Water in the Infrared,” J. Opt. Soc. Am. 61, 1316 (1971).
    [CrossRef]
  2. I. L. Tyler, G. Taylor, M. R. Querry, “Thin-Wedge-Shaped Cell for Highly Absorbent Liquids,” Appl. Opt. 17, 960 (1978).
    [CrossRef] [PubMed]
  3. L. Pontier, C. Dechambenoy, “Determination des constantes optiques de l’eau liquide entre 1 et 40 μ. Application au calcul de son pouvior reflecteur et de son emmissivte,” Ann. Geophys. 22, 633 (1966).
  4. W. M. Irvine, J. B. Pollack, “Infrared Optical Properties of Water and Ice Spheres,” Icarus 8, 324 (1968).
    [CrossRef]
  5. V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
    [CrossRef]
  6. G. M. Hale, M. R. Querry, “Optical Constants of Water in the 200-nm to 200-nm Wavelength Region,” Appl. Opt. 12, 555 (1973).
    [CrossRef] [PubMed]
  7. K. F. Palmer, D. Williams, “Optical Properties of Water in the Near Infrared,” J. Opt. Soc. Am. 64, 1107 (1974).
    [CrossRef]
  8. H. D. Downing, D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656 (1975).
    [CrossRef]
  9. D. J. Segelstein, “The Complex Refractive Index of Water,” M.S. Thesis, U. Missouri–Kansas City (1981).
  10. M. N. Afsar, J. B. Hasted, “Measurements of the Optical Constants of Liquid H2O and D2O Between 6 and 450 cm−1,” J. Opt. Soc. Am. 67, 902 (1977).
    [CrossRef]

1978 (1)

1977 (1)

1975 (1)

H. D. Downing, D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656 (1975).
[CrossRef]

1974 (1)

1973 (1)

1971 (1)

1970 (1)

V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
[CrossRef]

1968 (1)

W. M. Irvine, J. B. Pollack, “Infrared Optical Properties of Water and Ice Spheres,” Icarus 8, 324 (1968).
[CrossRef]

1966 (1)

L. Pontier, C. Dechambenoy, “Determination des constantes optiques de l’eau liquide entre 1 et 40 μ. Application au calcul de son pouvior reflecteur et de son emmissivte,” Ann. Geophys. 22, 633 (1966).

Afsar, M. N.

Aperovich, L. I.

V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
[CrossRef]

Dechambenoy, C.

L. Pontier, C. Dechambenoy, “Determination des constantes optiques de l’eau liquide entre 1 et 40 μ. Application au calcul de son pouvior reflecteur et de son emmissivte,” Ann. Geophys. 22, 633 (1966).

Downing, H. D.

H. D. Downing, D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656 (1975).
[CrossRef]

Hale, G. M.

Hasted, J. B.

Irvine, W. M.

W. M. Irvine, J. B. Pollack, “Infrared Optical Properties of Water and Ice Spheres,” Icarus 8, 324 (1968).
[CrossRef]

Mikhailov, B. A.

V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
[CrossRef]

Palmer, K. F.

Pollack, J. B.

W. M. Irvine, J. B. Pollack, “Infrared Optical Properties of Water and Ice Spheres,” Icarus 8, 324 (1968).
[CrossRef]

Pontier, L.

L. Pontier, C. Dechambenoy, “Determination des constantes optiques de l’eau liquide entre 1 et 40 μ. Application au calcul de son pouvior reflecteur et de son emmissivte,” Ann. Geophys. 22, 633 (1966).

Popova, S. I.

V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
[CrossRef]

Querry, M. R.

Robertson, C. W.

Segelstein, D. J.

D. J. Segelstein, “The Complex Refractive Index of Water,” M.S. Thesis, U. Missouri–Kansas City (1981).

Taylor, G.

Tyler, I. L.

Williams, D.

Zolatarev, V. M.

V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
[CrossRef]

Ann. Geophys. (1)

L. Pontier, C. Dechambenoy, “Determination des constantes optiques de l’eau liquide entre 1 et 40 μ. Application au calcul de son pouvior reflecteur et de son emmissivte,” Ann. Geophys. 22, 633 (1966).

Appl. Opt. (2)

Icarus (1)

W. M. Irvine, J. B. Pollack, “Infrared Optical Properties of Water and Ice Spheres,” Icarus 8, 324 (1968).
[CrossRef]

J. Geophys. Res. (1)

H. D. Downing, D. Williams, “Optical Constants of Water in the Infrared,” J. Geophys. Res. 80, 1656 (1975).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Commun. (1)

V. M. Zolatarev, B. A. Mikhailov, L. I. Aperovich, S. I. Popova, “Dispersion and Absorption of Water in the Infra-Red and Radio-Frequency Regions,” Opt. Commun. 1, 301 (1970).
[CrossRef]

Other (1)

D. J. Segelstein, “The Complex Refractive Index of Water,” M.S. Thesis, U. Missouri–Kansas City (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Exploded drawing of components comprising the holder and wedge shaped cell for measuring the Lambert absorption coefficients of liquids. The components are described in more detail in the text.

Fig. 2
Fig. 2

Graphic comparison of the k(ν) spectrum obtained by use of the wedge shaped cell and that previously compiled by Segelstein.9 The solid (dashed) curve denotes our (Segelstein’s) values for k(ν). The differences in the two spectra for ν > 8000 cm−1 are discussed in the text.

Fig. 3
Fig. 3

Graphic comparison of the n(ν) spectrum of water determined in this work (solid line) and that previously determined by Segelstein (dashed line). The differences in the two spectra are discussed in the text.

Fig. 4
Fig. 4

Normal incidence reflectance spectrum R of water as computed by use of the Fresnel equation and the values of N(ν) = n(ν) + ik(ν) determined during this investigation.

Tables (2)

Tables Icon

Table I Comparison of α(ν) from This Work with Those from Previous Work by Other Investigators

Tables Icon

Table II Comparison of n(ν) from This Work with Those from Previous Work by Other Investigators

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N ( ν ) = n ( ν ) + i k ( ν ) ,
I ( ν , x ) = I 0 ( ν ) exp [ 4 π ν k ( ν ) x ] .
k ( ν ) = α ( ν ) / ( 4 π ν ) .
T ( ν , x ) = t ( ν ) a 2 t ( ν ) s 2 exp [ 2 d α ( ν ) w x α ( ν ) s ] ,
α ( ν ) = ln [ T ( ν , x 1 ) / T ( ν , x 2 ) ] / ( x 1 x 2 ) .
I ( Z ) = A + B cos ( 4 π Z ν 0 tan β + ϕ ) ,
I ( ν ) = 2 π { A δ ( γ ) + B [ δ ( γ ξ ) exp ( i ϕ ) + δ ( γ + ξ ) exp ( i ϕ ) ] } ,
tan β = ν / ( 2 ν 0 ) = m / ( 2 ν 0 N Δ z ) ,
n ( ν 0 ) = 1 + Δ n ( ν 1 ) 0 K ( t ) exp ( i 2 π ν 0 t ) d t + 0 + K ( t ) exp ( i 2 π ν 0 t ) d t ,
K ( t ) = + k ( ν ) exp ( i 2 π ν t ) d ν .

Metrics