Abstract

The laser-induced temperature rise in a dye/polymer system for optical storage was directly obtained by measuring the intensity ratio of the Raman scattered radiations (anti-Stokes to Stokes). The laser beam that writes is used to collect scattering data. Computer simulated laser-induced temperature distribution and its corresponding intensity ratio were used to extract the actual temperature information developed on the recording films. Experiments have been done at laser powers below and up to the point of threshold of marking.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Maydan, “Micromachining and Image Recording on Thin Films by Laser Beams,” Bell Syst. Tech. J. 50, 1761 (1971).
  2. R. Sard, D. Maydan, “A Structural Investigation of the Laser Machining of Thin Bismuth Films,” J. Appl. Phys. 42, 5084 (1971).
    [CrossRef]
  3. M. O. Aboelfotch, R. J. von Gutfeld, “Effects of Pulse Laser Radiation on Thin Aluminum Films,” J. Appl. Phys. 43, 3789 (1972).
    [CrossRef]
  4. G. M. Blom, “Single Te Films and Te Trilayers for Optical Recording,” Appl. Phys. Lett. 35, 81 (1979).
    [CrossRef]
  5. R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).
  6. M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
    [CrossRef]
  7. P. Kivits, R. deBont, “Laser Induced Melting and Superheating in Te and In Films for Optical Data Storage,” Appl. Phys. 24, 307 (1981).
    [CrossRef]
  8. P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
    [CrossRef]
  9. J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982).
    [CrossRef]
  10. S. Y. Suh, D. A. Snyder, D. L. Anderson, “Writing Process in Ablative Optical Recording,” Appl. Opt. 24, 868 (1985).
    [CrossRef] [PubMed]
  11. A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
    [CrossRef]
  12. T. S. Chung, “Pit Formation During Laser Marking of Thin Organic Films,” J. Appl. Phys. 60, 55 (1986).
    [CrossRef]
  13. D. A. Hill, D. S. Soong, “A Model for Laser Marking of Thin Organic Data Storage Layers by Short Intense Pulses,” J. Appl. Phys. 61, 2132 (1987).
    [CrossRef]
  14. T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature Dependence of Raman Scatterng in Silicon,” Phys. Rev. B 1, 638 (1970).
    [CrossRef]
  15. R. Loudon, The Quantuum Theory of Light (Clarendon Press, Oxford, 1983).
  16. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967).
  17. M. Mansuripur, G. A. N. Connell, “Laser-Induced Local Heating of Moving Multilayer Media,” Appl. Opt. 22, 666 (1983).
    [CrossRef] [PubMed]
  18. B. Carnahan, H. A. Luther, J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 19xx).
  19. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-Induced Local Heating of Multilayers,” Appl. Opt. 21, 1106 (1982).
    [CrossRef] [PubMed]
  20. S. Tolansky, Multiple Beam Interference Microscopy of Metals (Academic, New York, 1970).
  21. G. Hass, Ed., Phys. Thin Films1 (1963); G. Hass, R. E. Thun, Eds., Phys. Thin Films2 (1964).
  22. X. Maissel, X. Glang, Eds., Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).
  23. M. A. Karim, “Measurement of Gaussian Beam Diameter Using Ronchi Rulings,” Electron. Lett. 21, 427 (1985).
    [CrossRef]
  24. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  25. T. C. Paulick, “Inversion of Normal-Incidence (R,T) Measurements to Obtain n + ik for Thin Films,” Appl. Opt. 25, 562 (1986).
    [CrossRef] [PubMed]
  26. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, Heidelberg, 1981).

1987

A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
[CrossRef]

D. A. Hill, D. S. Soong, “A Model for Laser Marking of Thin Organic Data Storage Layers by Short Intense Pulses,” J. Appl. Phys. 61, 2132 (1987).
[CrossRef]

1986

T. S. Chung, “Pit Formation During Laser Marking of Thin Organic Films,” J. Appl. Phys. 60, 55 (1986).
[CrossRef]

T. C. Paulick, “Inversion of Normal-Incidence (R,T) Measurements to Obtain n + ik for Thin Films,” Appl. Opt. 25, 562 (1986).
[CrossRef] [PubMed]

1985

M. A. Karim, “Measurement of Gaussian Beam Diameter Using Ronchi Rulings,” Electron. Lett. 21, 427 (1985).
[CrossRef]

S. Y. Suh, D. A. Snyder, D. L. Anderson, “Writing Process in Ablative Optical Recording,” Appl. Opt. 24, 868 (1985).
[CrossRef] [PubMed]

1983

1982

M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-Induced Local Heating of Multilayers,” Appl. Opt. 21, 1106 (1982).
[CrossRef] [PubMed]

P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
[CrossRef]

J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982).
[CrossRef]

1981

P. Kivits, R. deBont, “Laser Induced Melting and Superheating in Te and In Films for Optical Data Storage,” Appl. Phys. 24, 307 (1981).
[CrossRef]

1979

G. M. Blom, “Single Te Films and Te Trilayers for Optical Recording,” Appl. Phys. Lett. 35, 81 (1979).
[CrossRef]

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

1972

M. O. Aboelfotch, R. J. von Gutfeld, “Effects of Pulse Laser Radiation on Thin Aluminum Films,” J. Appl. Phys. 43, 3789 (1972).
[CrossRef]

1971

D. Maydan, “Micromachining and Image Recording on Thin Films by Laser Beams,” Bell Syst. Tech. J. 50, 1761 (1971).

R. Sard, D. Maydan, “A Structural Investigation of the Laser Machining of Thin Bismuth Films,” J. Appl. Phys. 42, 5084 (1971).
[CrossRef]

1970

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature Dependence of Raman Scatterng in Silicon,” Phys. Rev. B 1, 638 (1970).
[CrossRef]

Abbott, S. J.

A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
[CrossRef]

Aboelfotch, M. O.

M. O. Aboelfotch, R. J. von Gutfeld, “Effects of Pulse Laser Radiation on Thin Aluminum Films,” J. Appl. Phys. 43, 3789 (1972).
[CrossRef]

Aggarwal, R. L.

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature Dependence of Raman Scatterng in Silicon,” Phys. Rev. B 1, 638 (1970).
[CrossRef]

Anderson, D. L.

Blom, G. M.

G. M. Blom, “Single Te Films and Te Trilayers for Optical Recording,” Appl. Phys. Lett. 35, 81 (1979).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Burgess, A. N.

A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
[CrossRef]

Carnahan, B.

B. Carnahan, H. A. Luther, J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 19xx).

Chung, T. S.

T. S. Chung, “Pit Formation During Laser Marking of Thin Organic Films,” J. Appl. Phys. 60, 55 (1986).
[CrossRef]

Connell, G. A. N.

D’Asaro, L. A.

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

deBont, R.

P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
[CrossRef]

P. Kivits, R. deBont, “Laser Induced Melting and Superheating in Te and In Films for Optical Data Storage,” Appl. Phys. 24, 307 (1981).
[CrossRef]

Demtroder, W.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, Heidelberg, 1981).

Evans, K. E.

A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
[CrossRef]

Feldman, M.

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

Goodman, J. W.

Hart, T. R.

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature Dependence of Raman Scatterng in Silicon,” Phys. Rev. B 1, 638 (1970).
[CrossRef]

Hill, D. A.

D. A. Hill, D. S. Soong, “A Model for Laser Marking of Thin Organic Data Storage Layers by Short Intense Pulses,” J. Appl. Phys. 61, 2132 (1987).
[CrossRef]

Horigome, S.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Howe, D. G.

J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982).
[CrossRef]

Jacobs, B.

P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
[CrossRef]

Karim, M. A.

M. A. Karim, “Measurement of Gaussian Beam Diameter Using Ronchi Rulings,” Electron. Lett. 21, 427 (1985).
[CrossRef]

Kivits, P.

P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
[CrossRef]

P. Kivits, R. deBont, “Laser Induced Melting and Superheating in Te and In Films for Optical Data Storage,” Appl. Phys. 24, 307 (1981).
[CrossRef]

Lax, B.

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature Dependence of Raman Scatterng in Silicon,” Phys. Rev. B 1, 638 (1970).
[CrossRef]

Loudon, R.

R. Loudon, The Quantuum Theory of Light (Clarendon Press, Oxford, 1983).

Luther, H. A.

B. Carnahan, H. A. Luther, J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 19xx).

Mackay, M.

A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
[CrossRef]

Mansuripur, M.

Marchant, A. B.

J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982).
[CrossRef]

Maydan, D.

R. Sard, D. Maydan, “A Structural Investigation of the Laser Machining of Thin Bismuth Films,” J. Appl. Phys. 42, 5084 (1971).
[CrossRef]

D. Maydan, “Micromachining and Image Recording on Thin Films by Laser Beams,” Bell Syst. Tech. J. 50, 1761 (1971).

Miller, R. C.

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

Ojima, M.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Paulick, T. C.

Sakurai, J. J.

J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967).

Sard, R.

R. Sard, D. Maydan, “A Structural Investigation of the Laser Machining of Thin Bismuth Films,” J. Appl. Phys. 42, 5084 (1971).
[CrossRef]

Shigematsu, K.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Snyder, D. A.

Soong, D. S.

D. A. Hill, D. S. Soong, “A Model for Laser Marking of Thin Organic Data Storage Layers by Short Intense Pulses,” J. Appl. Phys. 61, 2132 (1987).
[CrossRef]

Suh, S. Y.

Taniguchi, Y.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Terao, M.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Tolansky, S.

S. Tolansky, Multiple Beam Interference Microscopy of Metals (Academic, New York, 1970).

von Gutfeld, R. J.

M. O. Aboelfotch, R. J. von Gutfeld, “Effects of Pulse Laser Radiation on Thin Aluminum Films,” J. Appl. Phys. 43, 3789 (1972).
[CrossRef]

Watson, H. A.

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

Wilkes, J. O.

B. Carnahan, H. A. Luther, J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 19xx).

Willens, R. H.

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Wrobel, J. J.

J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982).
[CrossRef]

Yonezawqa, S.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Zalm, P.

P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
[CrossRef]

Appl. Opt.

Appl. Phys.

P. Kivits, R. deBont, “Laser Induced Melting and Superheating in Te and In Films for Optical Data Storage,” Appl. Phys. 24, 307 (1981).
[CrossRef]

Appl. Phys. Lett.

J. J. Wrobel, A. B. Marchant, D. G. Howe, “Laser Marking of Thin Organic Films,” Appl. Phys. Lett. 40, 928 (1982).
[CrossRef]

G. M. Blom, “Single Te Films and Te Trilayers for Optical Recording,” Appl. Phys. Lett. 35, 81 (1979).
[CrossRef]

Bell Syst. Tech. J.

R. C. Miller, R. H. Willens, H. A. Watson, L. A. D’Asaro, M. Feldman, “A Gallium-Arsenide Laser Facsimile Printer,” Bell Syst. Tech. J. 58, 1909 (1979).

D. Maydan, “Micromachining and Image Recording on Thin Films by Laser Beams,” Bell Syst. Tech. J. 50, 1761 (1971).

Electron. Lett.

M. A. Karim, “Measurement of Gaussian Beam Diameter Using Ronchi Rulings,” Electron. Lett. 21, 427 (1985).
[CrossRef]

J. Appl. Phys.

R. Sard, D. Maydan, “A Structural Investigation of the Laser Machining of Thin Bismuth Films,” J. Appl. Phys. 42, 5084 (1971).
[CrossRef]

M. O. Aboelfotch, R. J. von Gutfeld, “Effects of Pulse Laser Radiation on Thin Aluminum Films,” J. Appl. Phys. 43, 3789 (1972).
[CrossRef]

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawqa, “Chalcogenide Thin Films for Laser-Beam Recording by Thermal Creation of Holes,” J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of Transient Thermal Conduction in Tellurium and Organic Dye Based Digital Optical Storage Media,” J. Appl. Phys. 61, 74 (1987).
[CrossRef]

T. S. Chung, “Pit Formation During Laser Marking of Thin Organic Films,” J. Appl. Phys. 60, 55 (1986).
[CrossRef]

D. A. Hill, D. S. Soong, “A Model for Laser Marking of Thin Organic Data Storage Layers by Short Intense Pulses,” J. Appl. Phys. 61, 2132 (1987).
[CrossRef]

Phys. Rev. B

T. R. Hart, R. L. Aggarwal, B. Lax, “Temperature Dependence of Raman Scatterng in Silicon,” Phys. Rev. B 1, 638 (1970).
[CrossRef]

Thin Solid Films

P. Kivits, R. deBont, B. Jacobs, P. Zalm, “The Hole Formation Process in Tellurium Layers for Optical Data Storage,” Thin Solid Films 87, 215 (1982).
[CrossRef]

Other

R. Loudon, The Quantuum Theory of Light (Clarendon Press, Oxford, 1983).

J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967).

S. Tolansky, Multiple Beam Interference Microscopy of Metals (Academic, New York, 1970).

G. Hass, Ed., Phys. Thin Films1 (1963); G. Hass, R. E. Thun, Eds., Phys. Thin Films2 (1964).

X. Maissel, X. Glang, Eds., Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

B. Carnahan, H. A. Luther, J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 19xx).

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, Heidelberg, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Film geometry and coordinate system: I(r), laser beam intensity profile; r0 beam radius; P0, laser power; z = 0, film surface; z = d1, film–substrate interface; n ˆ 1 = n 1 i k, film refractive index; n2, substrate refractive index; υ, disk velocity (from left to right) relative to a stationary laser beam.

Fig. 2
Fig. 2

Temperature rise (above ambient) vs z when the dye/polymer film moves at 0.8 m/s relative to the laser beam. Tmax is the highest temperature reached at the surface of the film. The dotted line is the film–substrate interface. For this calculation, a beam radius of 4.03 μm and a laser power of 17 mW were used. The heat flow from the surface was neglected, i.e., γ = 0.

Fig. 3
Fig. 3

Steady state isotherms on the surface of the dye/polymer film when the film moves from left to right at 0.8 m/s. The position of the laser beam is located by the cross. The dot (Tmax) at 280.2°C is the hottest spot (1.6 μm behind the laser beam) on the film surface and each successive contour represents a temperature that is lower by 20% of the maximum temperature rise (conditions as in Fig. 2).

Fig. 4
Fig. 4

Steady state isothermal plot on an in-track plane cut at the laser spot center. The dotted line is the film–substrate interface (conditions as in Figs. 2 and 3).

Fig. 5
Fig. 5

Steady state isothermal plot on a cross-track plane cut at the hottest spot (Tmax) on the surface of the film. Twaist (125.3°C) is the temperature at the beam radius. The dotted line is the film–substrate interface (conditions as in Figs. 2 and 3).

Fig. 6
Fig. 6

Anti-Stokes to Stokes scattered radiation intensity ratio vs Tmax (conditions as in Fig. 2).

Fig. 7
Fig. 7

Schematic layout of the Raman scattering temperature probe apparatus. The photon counting electronics consists of a preamplifier, amplifier, pulse height discriminator, and decade counter (or strip charge recorder).

Fig. 8
Fig. 8

Raman spectrum (Stokes) of the dye/polymer film on an epoxy substrate disk. The peak at 686 cm−1 is used for temperature measurements. Some of the laser plasma lines not totally eliminated are labeled.

Fig. 9
Fig. 9

Raman spectrum (anti-Stokes) of the dye/polymer film on an epoxy substrate disk (comments as in Fig. 8).

Fig. 10
Fig. 10

Experimentally measured Tmax vs incident laser power. Different symbols represent measurements made on different disks. The solid line is calculated for n1 = 1.4, k1 = 0.103, and r0 = 4.03 μm. Laser scanning velocity of 0.8 m/s is used. A threshold power for marking is determined to be 17 mW. Circular track measurements: •, ▲, Δ; spiral track measurements: ○.

Tables (1)

Tables Icon

Table I Optical and Thermal Properties of Dye/Polymer Films and Epoxy

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

σ d Ω = π 2 e 4 ν s 4 0 2 h 2 c 4 | I ( s · D f i · D I i E I E i h ν i Γ I / 2 + · D f I s · D I i E I E i + h ν s i Γ I / 2 ) | 2 ,
I a I s = σ d Ω ( anti - Stokes ) σ d Ω ( Stokes ) = ( ν a ν s ) 4 n p n p + 1 ,
n p = n p ( T ) = 1 exp ( h ν 0 / k T ) 1 ,
I a I s = ( ν a ν s ) 4 exp ( h ν 0 / k T ) ,
I a I s = C R × ( ν a ν s ) 4 n p exp [ ( r / r 0 ) 2 ] Y ( z ) exp ( α a z ) d V ( n p + 1 ) exp [ ( r / r 0 ) 2 ] Y ( z ) exp ( α s z ) d V .
I ( r ) = P 0 π r 0 2 exp [ ( r / r 0 ) 2 ] ,
C m T ( r , z , t ) t K m 2 T ( r , z , t ) = g ( r , z , t ) , m = 1 , 2 ,
T z r , 0 , t = γ T ( r , 0 , t ) , T ( r , , t ) = T ( , z , t ) = T ( r , z , 0 ) = T room ,
g ( r , z , t ) = I ( r ) d Y ( z ) d z ;
C R = I f I [ 1 ( E I E i h ν ) 2 + Γ I 2 / 4 ] anti-Stokes I f I [ 1 ( E I E i h ν ) 2 + Γ I 2 / 4 ] Stokes ,
k 1 = N e 2 0 m I ω I f I Γ I ( ω I 2 ω 2 ) 2 + Γ I 2 ω 2 ,

Metrics