Abstract

The present study demonstrates the potential of a multiple wavelength lidar for discriminating between several aerosol types such as maritime, continental, stratospheric, and desert aerosols on the basis of wavelength dependence of the aerosol backscatter coefficient. In the analysis of lidar signals, the two-component lidar equation was solved under the assumption of similarity in the derived profiles of backscatter coefficients for each wavelength, and this made it possible to reduce the uncertainty in the extinction/backscatter ratio, which is a key parameter in the lidar solution. It is shown that a three-wavelength lidar system operating at 300, 600, and 1064 nm can provide unique information for discriminating between various aerosol types such as continental, maritime, Saharan dust, stratospheric aerosols in a tropopause fold event, and tropical forest aerosols. Measurement error estimation was also made through numerical simulations. Mie calculations were made using in situ aerosol data and aerosol models to compare with the lidar results. There was disagreement between the theoretical and empirical results, which in some cases was substantial. These differences may be partly due to uncertainties in the lidar data analysis and aerosol characteristics and also due to the conventional assumption of aerosol sphericity for the aerosol Mie calculations.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1987), pp. 71–151.
  2. S. A. Wood, “Identification of Aerosol Composition from Multi-Wavelength Lidar Measurements,” Technical Report GSTR-84-4 (1984).
  3. C. H. Whitlock, J. T. Suttles, S. R. LeCroy, “Phase Function, Backscatter, Extinction, and Absorption for Standard Radiation Atmosphere and El Chichon Aerosol Models at Visible and Near-Infrared Wavelengths,” NASA Tech. Memo 86379 (1985).
  4. E. P. Shettle, “Backscattering by Atmospheric Aerosols,” presented at the IAMAP/IAPSO Joint Assembly, Honolulu, HI, (5–16 Aug. 1985).
  5. E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD-CP-183 (1976), Ref. 2.
  6. F. G. Fernald, “Analysis of Atmospheric Lidar Observations: Some Comments,” Appl. Opt. 23, 652 (1984).
    [CrossRef] [PubMed]
  7. Y. Sasano, E. V. Browell, “Wavelength Dependence of Aerosol Backscatter Coefficients Obtained by Multiple Wavelength Lidar Measurements,” in Abstracts of papers presented at the Thirteenth International Laser Radar Conference, Toronto, NASA Conf. Publ. 2431 (1986), pp. 28–31.
  8. J. F. Potter, “Two-Frequency Lidar Inversion Technique,” Appl. Opt. 26, 1250 (1987).
    [CrossRef] [PubMed]
  9. J. D. Klett, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211 (1981).
    [CrossRef] [PubMed]
  10. Y. Sasano, H. Nakane, “Significance of the Extinction/Backscatter Ratio and the Boundary Value Term in the Solution for the Two-Component Lidar Equation,” Appl. Opt. 23, 11 (1984).
    [CrossRef]
  11. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).
  12. U.S. Standard Atmosphere 1976 (U.S. GPO, Washington, DC).
  13. E. V. Browell et al., “NASA Multipurpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles,” Appl. Opt. 22, 522 (1983).
    [CrossRef] [PubMed]
  14. E. V. Browell, S. Ismail, S. T. Shipley, 1985: “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827 (1985).
    [CrossRef] [PubMed]
  15. E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
    [CrossRef]
  16. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for Error Analysis and Simulation of Lidar Aerosol Measurements,” Appl. Opt. 18, 3783 (1979).
    [PubMed]
  17. V. E. Zuev, Laser Beams in the Atmosphere, Translated by J. S. Wood (Consultants Bureau, New York, 1982).
    [CrossRef]
  18. H. W. M. Salemink, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
    [CrossRef]
  19. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1968).
  20. G. L. Gregory et al., “Air Chemistry over the Tropical Forest of Guyana,” J. Geophys. Res. 91, 8603 (1986).
    [CrossRef]
  21. R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
    [CrossRef]
  22. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  23. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).
  24. P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
    [CrossRef]

1987 (2)

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

J. F. Potter, “Two-Frequency Lidar Inversion Technique,” Appl. Opt. 26, 1250 (1987).
[CrossRef] [PubMed]

1986 (2)

G. L. Gregory et al., “Air Chemistry over the Tropical Forest of Guyana,” J. Geophys. Res. 91, 8603 (1986).
[CrossRef]

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

1985 (1)

1984 (3)

1983 (1)

1981 (2)

J. D. Klett, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211 (1981).
[CrossRef] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

1979 (1)

1972 (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

Beck, S. M.

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

Bergwerff, J. B.

H. W. M. Salemink, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1968).

Browell, E. V.

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

E. V. Browell, S. Ismail, S. T. Shipley, 1985: “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827 (1985).
[CrossRef] [PubMed]

E. V. Browell et al., “NASA Multipurpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles,” Appl. Opt. 22, 522 (1983).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, “Wavelength Dependence of Aerosol Backscatter Coefficients Obtained by Multiple Wavelength Lidar Measurements,” in Abstracts of papers presented at the Thirteenth International Laser Radar Conference, Toronto, NASA Conf. Publ. 2431 (1986), pp. 28–31.

Chu, W. P.

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1987), pp. 71–151.

Danielson, E. F.

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD-CP-183 (1976), Ref. 2.

Fernald, F. G.

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

Grams, G. W.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).

Gregory, G. L.

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

G. L. Gregory et al., “Air Chemistry over the Tropical Forest of Guyana,” J. Geophys. Res. 91, 8603 (1986).
[CrossRef]

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

Harriss, R. C.

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

Ismail, S.

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

E. V. Browell, S. Ismail, S. T. Shipley, 1985: “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827 (1985).
[CrossRef] [PubMed]

Klett, J. D.

LeCroy, S. R.

C. H. Whitlock, J. T. Suttles, S. R. LeCroy, “Phase Function, Backscatter, Extinction, and Absorption for Standard Radiation Atmosphere and El Chichon Aerosol Models at Visible and Near-Infrared Wavelengths,” NASA Tech. Memo 86379 (1985).

Livingston, J. M.

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

McCormick, M. P.

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for Error Analysis and Simulation of Lidar Aerosol Measurements,” Appl. Opt. 18, 3783 (1979).
[PubMed]

Morley, B. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).

Nakane, H.

Patterson, E. M.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).

Pepin, T. J.

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

Potter, J. F.

Russell, P. B.

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for Error Analysis and Simulation of Lidar Aerosol Measurements,” Appl. Opt. 18, 3783 (1979).
[PubMed]

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1987), pp. 71–151.

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).

Salemink, H. W. M.

H. W. M. Salemink, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Sasano, Y.

Y. Sasano, H. Nakane, “Significance of the Extinction/Backscatter Ratio and the Boundary Value Term in the Solution for the Two-Component Lidar Equation,” Appl. Opt. 23, 11 (1984).
[CrossRef]

Y. Sasano, E. V. Browell, “Wavelength Dependence of Aerosol Backscatter Coefficients Obtained by Multiple Wavelength Lidar Measurements,” in Abstracts of papers presented at the Thirteenth International Laser Radar Conference, Toronto, NASA Conf. Publ. 2431 (1986), pp. 28–31.

Schotanus, P.

H. W. M. Salemink, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

Sebacher, D. I.

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD-CP-183 (1976), Ref. 2.

E. P. Shettle, “Backscattering by Atmospheric Aerosols,” presented at the IAMAP/IAPSO Joint Assembly, Honolulu, HI, (5–16 Aug. 1985).

Shipley, S. T.

Suttles, J. T.

C. H. Whitlock, J. T. Suttles, S. R. LeCroy, “Phase Function, Backscatter, Extinction, and Absorption for Standard Radiation Atmosphere and El Chichon Aerosol Models at Visible and Near-Infrared Wavelengths,” NASA Tech. Memo 86379 (1985).

Swissler, T. J.

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for Error Analysis and Simulation of Lidar Aerosol Measurements,” Appl. Opt. 18, 3783 (1979).
[PubMed]

Talbot, R. W.

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

Whitlock, C. H.

C. H. Whitlock, J. T. Suttles, S. R. LeCroy, “Phase Function, Backscatter, Extinction, and Absorption for Standard Radiation Atmosphere and El Chichon Aerosol Models at Visible and Near-Infrared Wavelengths,” NASA Tech. Memo 86379 (1985).

Wood, S. A.

S. A. Wood, “Identification of Aerosol Composition from Multi-Wavelength Lidar Measurements,” Technical Report GSTR-84-4 (1984).

Zuev, V. E.

V. E. Zuev, Laser Beams in the Atmosphere, Translated by J. S. Wood (Consultants Bureau, New York, 1982).
[CrossRef]

AFGRL (1)

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFGRL72-0497 (1972).

Appl. Opt. (7)

Appl. Phys. B (1)

H. W. M. Salemink, P. Schotanus, J. B. Bergwerff, “Quantitative Lidar at 532 nm for Vertical Extinction Profiles and the Effect of Relative Humidity,” Appl. Phys. B 34, 187 (1984).
[CrossRef]

J. Atmos. Sci. (1)

P. B. Russell, T. J. Swissler, M. P. McCormick, W. P. Chu, J. M. Livingston, T. J. Pepin, “Satellite and Correlative Measurements of the Stratospheric Aerosol. I: An Optical Model for Data Conversion,” J. Atmos. Sci. 38, 1280 (1981).
[CrossRef]

J. Geophys. Res. (3)

E. V. Browell, E. F. Danielson, S. Ismail, G. L. Gregory, S. M. Beck, “Tropopause Fold Structure Determined from Airborne Lidar and in situ Measurements,” J. Geophys. Res. 92, 2112 (1987).
[CrossRef]

G. L. Gregory et al., “Air Chemistry over the Tropical Forest of Guyana,” J. Geophys. Res. 91, 8603 (1986).
[CrossRef]

R. W. Talbot, R. C. Harriss, E. V. Browell, G. L. Gregory, D. I. Sebacher, S. M. Beck, “Distribution and Geochemistry of Aerosols in Tropical North Atlantic Troposphere: Relationship to Saharan Dust,” J. Geophys. Res. 91, 5173 (1986).
[CrossRef]

Other (11)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, E. M. Patterson, “Improved Simulation of Aerosols, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contract Report 3473 (1981).

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1987), pp. 71–151.

S. A. Wood, “Identification of Aerosol Composition from Multi-Wavelength Lidar Measurements,” Technical Report GSTR-84-4 (1984).

C. H. Whitlock, J. T. Suttles, S. R. LeCroy, “Phase Function, Backscatter, Extinction, and Absorption for Standard Radiation Atmosphere and El Chichon Aerosol Models at Visible and Near-Infrared Wavelengths,” NASA Tech. Memo 86379 (1985).

E. P. Shettle, “Backscattering by Atmospheric Aerosols,” presented at the IAMAP/IAPSO Joint Assembly, Honolulu, HI, (5–16 Aug. 1985).

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD-CP-183 (1976), Ref. 2.

Y. Sasano, E. V. Browell, “Wavelength Dependence of Aerosol Backscatter Coefficients Obtained by Multiple Wavelength Lidar Measurements,” in Abstracts of papers presented at the Thirteenth International Laser Radar Conference, Toronto, NASA Conf. Publ. 2431 (1986), pp. 28–31.

V. E. Zuev, Laser Beams in the Atmosphere, Translated by J. S. Wood (Consultants Bureau, New York, 1982).
[CrossRef]

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1968).

U.S. Standard Atmosphere 1976 (U.S. GPO, Washington, DC).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scattering ratio profiles calculated with S1 = 0.0 (solid) and 90.0 (dashed) for the lidar signals at a wavelength of 1064 nm.

Fig. 2
Fig. 2

Diagram of the wavelength dependence parameters derived without attenuation correction (symbols) and by method 1 (boxes).

Fig. 3
Fig. 3

Diagram of the wavelength dependence parameters derived by additional application of method 2.

Fig. 4
Fig. 4

Diagram of wavelength dependence parameters calculated by the Mie theory using in situ aerosol data.

Fig. 5
Fig. 5

Model distribution of aerosol backscatter coefficients at 1064 nm.

Fig. 6
Fig. 6

Solution profiles relative to the true (model) profiles for λ = 1064 nm and b2 = 1.0.

Fig. 7
Fig. 7

Solution profiles relative to the true (model) profiles for λ = 1064 nm and b2 = 20.0.

Fig. 8
Fig. 8

Diagram of wavelength dependence parameters calculated by the Mie theory using aerosol models (Whitlock et al.3).

Tables (5)

Tables Icon

Table I Multiple Wavelength Lidar Experiments

Tables Icon

Table II Ranges of Extinction to Backscatter Ratio Estimated by Method 2

Tables Icon

Table III In Situ Aerosol Measurements

Tables Icon

Table IV Refractive Indices for Mie Calculations*

Tables Icon

Table V Summary of Error Estimation by Method 2

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P ( R ) = C [ β 1 ( R ) + β 2 ( R ) ] T 2 ( R ) / R 2 ,
T ( R ) = exp { 0 R [ α 1 ( r ) + α 2 ( r ) + α 3 ( r ) ] d r } ,
S 1 = α 1 / β 1 for aerosols ( subscript 1 ) ,
S 2 = α 2 / β 2 for air molecules ( subscript 2 ) ,
β 1 ( R ) = β 2 ( R ) + X ( R ) exp [ 2 ( S 1 / S 2 ) R 0 R α 2 ( r ) d r ] X ( R 0 ) β 1 ( R 0 ) + β 2 ( R 0 ) 2 S 1 R 0 R X ( r ) exp [ 2 ( S 1 / S 2 ) R 0 r α 2 ( r ) d r ] d r ,
X ( R ) = P ( R ) R 2 exp [ 2 0 R { α 2 ( r ) + α 3 ( r ) } d r ] ,
δ = ln { β 1 ( λ 1 ) / β 1 ( λ 2 ) } / ln ( λ 1 / λ 2 ) ,
J ( S 1 ) = i = i 1 i = i 2 [ β 1 ( λ, R i ) β 2 ( λ, R i ) A β 1 ( λ 0 , R i ) β 2 ( λ 0 , R i ) ] 2 ,
β 1 = 3 4 r d V ( r ) d log r Q b ( 2 π r λ , m * ) d log r ,
d V ( r ) d log r = ( Δ V Δ log r ) i = Δ M i ρ log ( r i + 1 / r i ) ,
β 1 = i ( Δ V Δ log r ) i log r i log r i + 1 3 4 r Q b ( 2 π r λ , m * ) d log r .
β 1 * ( z ) / β 2 ( z ) = b 1 for z h 1 ,
= ( z h 2 ) b 1 b 2 h 1 h 2 + b 2 for h 1 > z h 2 ,
= b 2 for z < h 2 ,
k 1 = β 1 ( λ 1 ) / β 1 * ( λ 1 ) 1 ,
k 2 = β 1 ( λ 2 ) / β 1 * ( λ 2 ) 1 ,
δ δ* = ln [ ( k 1 + 1 ) / ( k 2 + 1 ) ] / ln ( λ 1 / λ 2 ) .

Metrics