Abstract

The effect of the local diameter of a focused CO2 laser beam on calculated internal source function distributions and experimentally observed explosive characteristics is examined for 165-μm spherical methanol droplets. Experimental results show that the location and the characteristics of the explosive process change as the droplet is moved out of the laser focal point along the axis of propagation. Theoretical calculations indicate that, when the beam diameter is of the same order of magnitude as the droplet diameter, a modification of Mie theory, accounting for the finite beam size of the laser, is necessary to provide results which are consistent with experimental observations.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Laser-Induced Explosion of H2O Droplets: Spatially Resolved Spectra,” Opt. Lett. 12, 22 (1987).
    [CrossRef] [PubMed]
  2. P. Chylek, M. A. Jarzembski, V. Srivastava, R. G. Pinnick, J. D. Pendleton, J. P. Cruncleton, “Effect of Spherical Particles on Laser-Induced Breakdown of Gases,” Appl. Opt. 26, 760 (1987).
    [CrossRef] [PubMed]
  3. V. Barinov, S. Sorokin, “Explosion of Water Drops Under the Action of Optical Radiation,” Sov. J. Quantum Electron. 3, 89 (1973).
    [CrossRef]
  4. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908).
    [CrossRef]
  5. P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57 (1909).
    [CrossRef]
  6. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and Near-Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys., 64, 1632 (1988).
    [CrossRef]
  7. L. Davis, “Theory of Electromagnetic Beams,” Phys. Rev. A 19, 1177 (1979).
    [CrossRef]
  8. G. Gouesbet, B. Maheu, G. Grehan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center,” J. Opt. Paris 16, 239 (1985).
    [CrossRef]
  9. K. D. Ahlers, D. R. Alexander, “Microcomputer Based Digital Image Processing System Developed to Count and Size Laser-Generated Small Particle Images,” Opt. Eng. 24, 1060 (1985).
  10. M. Querry, U. Missouri–Kansas City; private communication (July1987).

1988 (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and Near-Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys., 64, 1632 (1988).
[CrossRef]

1987 (2)

1985 (2)

G. Gouesbet, B. Maheu, G. Grehan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center,” J. Opt. Paris 16, 239 (1985).
[CrossRef]

K. D. Ahlers, D. R. Alexander, “Microcomputer Based Digital Image Processing System Developed to Count and Size Laser-Generated Small Particle Images,” Opt. Eng. 24, 1060 (1985).

1979 (1)

L. Davis, “Theory of Electromagnetic Beams,” Phys. Rev. A 19, 1177 (1979).
[CrossRef]

1973 (1)

V. Barinov, S. Sorokin, “Explosion of Water Drops Under the Action of Optical Radiation,” Sov. J. Quantum Electron. 3, 89 (1973).
[CrossRef]

1909 (1)

P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57 (1909).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908).
[CrossRef]

Ahlers, K. D.

K. D. Ahlers, D. R. Alexander, “Microcomputer Based Digital Image Processing System Developed to Count and Size Laser-Generated Small Particle Images,” Opt. Eng. 24, 1060 (1985).

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and Near-Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys., 64, 1632 (1988).
[CrossRef]

K. D. Ahlers, D. R. Alexander, “Microcomputer Based Digital Image Processing System Developed to Count and Size Laser-Generated Small Particle Images,” Opt. Eng. 24, 1060 (1985).

Barinov, V.

V. Barinov, S. Sorokin, “Explosion of Water Drops Under the Action of Optical Radiation,” Sov. J. Quantum Electron. 3, 89 (1973).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and Near-Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys., 64, 1632 (1988).
[CrossRef]

Chang, R. K.

Chylek, P.

Cruncleton, J. P.

Davis, L.

L. Davis, “Theory of Electromagnetic Beams,” Phys. Rev. A 19, 1177 (1979).
[CrossRef]

Debye, P.

P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57 (1909).
[CrossRef]

Eickmans, J. H.

Gouesbet, G.

G. Gouesbet, B. Maheu, G. Grehan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center,” J. Opt. Paris 16, 239 (1985).
[CrossRef]

Grehan, G.

G. Gouesbet, B. Maheu, G. Grehan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center,” J. Opt. Paris 16, 239 (1985).
[CrossRef]

Hsieh, W.-F.

Jarzembski, M. A.

Maheu, B.

G. Gouesbet, B. Maheu, G. Grehan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center,” J. Opt. Paris 16, 239 (1985).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908).
[CrossRef]

Pendleton, J. D.

Pinnick, R. G.

Querry, M.

M. Querry, U. Missouri–Kansas City; private communication (July1987).

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and Near-Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys., 64, 1632 (1988).
[CrossRef]

Sorokin, S.

V. Barinov, S. Sorokin, “Explosion of Water Drops Under the Action of Optical Radiation,” Sov. J. Quantum Electron. 3, 89 (1973).
[CrossRef]

Srivastava, V.

Ann. Phys. (2)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908).
[CrossRef]

P. Debye, “Der Lichtdruck auf Kugeln von beliebigem Material,” Ann. Phys. 30, 57 (1909).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and Near-Surface Electromagnetic Fields for a Spherical Particle Irradiated by a Focused Laser Beam,” J. Appl. Phys., 64, 1632 (1988).
[CrossRef]

J. Opt. Paris (1)

G. Gouesbet, B. Maheu, G. Grehan, “The Order of Approximation in a Theory of the Scattering of a Gaussian Beam by a Mie Scatter Center,” J. Opt. Paris 16, 239 (1985).
[CrossRef]

Opt. Eng. (1)

K. D. Ahlers, D. R. Alexander, “Microcomputer Based Digital Image Processing System Developed to Count and Size Laser-Generated Small Particle Images,” Opt. Eng. 24, 1060 (1985).

Opt. Lett. (1)

Phys. Rev. A (1)

L. Davis, “Theory of Electromagnetic Beams,” Phys. Rev. A 19, 1177 (1979).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. Barinov, S. Sorokin, “Explosion of Water Drops Under the Action of Optical Radiation,” Sov. J. Quantum Electron. 3, 89 (1973).
[CrossRef]

Other (1)

M. Querry, U. Missouri–Kansas City; private communication (July1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental configuration.

Fig. 2
Fig. 2

Interaction of a 165-μm methanol droplet ( n ¯ = 1.395 + 0.0163i) with λ = 10.6-μm radiation at an incident laser intensity of ~100 kW/cm2. The droplet is located at the laser focal point (2w = 120 μm); the laser is propagating from left to right.

Fig. 3
Fig. 3

Interaction of a 165-μm methanol droplet ( n ¯ = 1.395 + 0.0163i) with λ = 10.6-μm radiation at an incident laser intensity of ~15 kW/cm2. The droplet is located ~7 mm behind the laser focal point (2w = 800 μm); the laser is propagating from left to right.

Fig. 4
Fig. 4

Schematic of the geometry used for the theoretical calculations.

Fig. 5
Fig. 5

Computer generated plot of the normalized internal source function distribution within a 165-μm methanol droplet ( n ¯ = 1.395 + 0.0163i) illuminated by a plane wave (λ = 10.6 μm).

Fig. 6
Fig. 6

Computer generated plot of the normalized internal source function distribution within a 165-μm methanol droplet ( n ¯ = 1.395 + 0.0163i) illuminated by a Gaussian beam (λ = 10.6 μm, w ˜ 0 = 0 . 75 , x ˜ 0 = y ˜ 0 = 0). The droplet is located 7 mm behind the laser focal point ( z ˜ 0 = 85 ).

Fig. 7
Fig. 7

Computer generated plot of the normalized internal source function distribution within a 165-μm methanol droplet ( n ¯ = 1.395 + 0.0163i) illuminated by a Gaussian beam (λ = 10.6 μm, w ˜ 0 = 0 . 75 , x ˜ 0 = y ˜ 0 = 0). The droplet is located 1.65 mm behind the laser focal point ( z ˜ 0 = 20 ).

Fig. 8
Fig. 8

Computer generated plot of the normalized internal source function distribution within a 165-μm methanol droplet ( n ¯ = 1.395 + 0.0163i) illuminated by a Gaussian beam (λ = 10.6 μm, w ˜ 0 = 0 . 75 , x ˜ 0 = y ˜ 0 = 0). The droplet is located at the laser focal point ( z ˜ 0 = 0 ).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ˜ = | E ¯ | 2 | E ¯ 0 | 2 , 2 w ˜ 0 = 2 w ( z = 0 ) a ,

Metrics