Abstract

For very high precision molecular spectroscopy we use a tunable diode laser which is frequency locked to an internally coupled Fabry-Perot interferometer (icFPI). The spectra are calibrated by means of the interference pattern of an iodine stabilized He–Ne reference laser which is simultaneously coupled into the icFPI. In this paper the exact relation between the diode laser frequency and the He–Ne fringe number is derived and a convenient calibration procedure yielding a frequency accuracy of 5 × 10−5 cm−1 at 10 μm is described.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130 (1986).
    [CrossRef] [PubMed]
  2. W. G. Schweitzer, E. G. Kessler, R. D. Deslattes, H. P. Layer, J. R. Whetstone, “Description, Performance, and Wavelengths of Iodine Stabilized Lasers,” Appl. Opt. 12, 2927 (1973).
    [CrossRef] [PubMed]
  3. K. Bielke, R. Schieder, “Investigation of the Absorptions of Monoisotopic OsO4 with CO2 and N2O Laser Lines with Saturation Spectroscopy,” Opt. Commun. 35, 342 (1980).
    [CrossRef]
  4. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth Measurements of Tunable Diode Lasers Using Heterodyne and Etalon Techniques,” Appl. Opt. 21, 3961 (1982).
    [CrossRef] [PubMed]
  5. S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
    [CrossRef]
  6. F. R. Petersen, D. G. McDonald, J. D. Cupp, B. L. Danielson, “Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption,” in Laser Spectroscopy, R. G. Brewer, A. Mooradian, Eds. (Plenum, New York, 1974).
  7. T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).
  8. W. J. Smith, Modern Optical Engineering. The Design of Optical Systems (McGraw-Hill, New York, 1966).

1988 (1)

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

1986 (1)

1983 (1)

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

1982 (1)

1980 (1)

K. Bielke, R. Schieder, “Investigation of the Absorptions of Monoisotopic OsO4 with CO2 and N2O Laser Lines with Saturation Spectroscopy,” Opt. Commun. 35, 342 (1980).
[CrossRef]

1973 (1)

Bielke, K.

K. Bielke, R. Schieder, “Investigation of the Absorptions of Monoisotopic OsO4 with CO2 and N2O Laser Lines with Saturation Spectroscopy,” Opt. Commun. 35, 342 (1980).
[CrossRef]

Cassidy, D. T.

Clar, H. J.

Cupp, J. D.

F. R. Petersen, D. G. McDonald, J. D. Cupp, B. L. Danielson, “Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption,” in Laser Spectroscopy, R. G. Brewer, A. Mooradian, Eds. (Plenum, New York, 1974).

Danielson, B. L.

F. R. Petersen, D. G. McDonald, J. D. Cupp, B. L. Danielson, “Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption,” in Laser Spectroscopy, R. G. Brewer, A. Mooradian, Eds. (Plenum, New York, 1974).

Deslattes, R. D.

Giesen, T.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

Harter, M.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

Kauppinen, J.

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

Kessler, E. G.

Layer, H. P.

McDonald, D. G.

F. R. Petersen, D. G. McDonald, J. D. Cupp, B. L. Danielson, “Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption,” in Laser Spectroscopy, R. G. Brewer, A. Mooradian, Eds. (Plenum, New York, 1974).

Menzies, R. T.

Papousek, D.

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

Petersen, F. R.

F. R. Petersen, D. G. McDonald, J. D. Cupp, B. L. Danielson, “Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption,” in Laser Spectroscopy, R. G. Brewer, A. Mooradian, Eds. (Plenum, New York, 1974).

Reich, M.

Reid, J.

Schieder, R.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130 (1986).
[CrossRef] [PubMed]

K. Bielke, R. Schieder, “Investigation of the Absorptions of Monoisotopic OsO4 with CO2 and N2O Laser Lines with Saturation Spectroscopy,” Opt. Commun. 35, 342 (1980).
[CrossRef]

Schweitzer, W. G.

Smith, W. J.

W. J. Smith, Modern Optical Engineering. The Design of Optical Systems (McGraw-Hill, New York, 1966).

Urban, S.

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

Whetstone, J. R.

Winnewisser, G.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

M. Reich, R. Schieder, H. J. Clar, G. Winnewisser, “Internally Coupled Fabry-Perot Interferometer for High Precision Wavelength Control of Tunable Diode Lasers,” Appl. Opt. 25, 130 (1986).
[CrossRef] [PubMed]

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

Yamada, K.

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

Yamada, K. M. T.

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

Appl. Opt. (3)

J. Mol. Spectrosc. (1)

S. Urban, D. Papousek, J. Kauppinen, K. Yamada, G. Winnewisser, “The ν2 Band of 14NH3: A Calibration Standard with Better than 1*10−4 cm−1 Precision,” J. Mol. Spectrosc. 101, 1 (1983).
[CrossRef]

Opt. Commun. (1)

K. Bielke, R. Schieder, “Investigation of the Absorptions of Monoisotopic OsO4 with CO2 and N2O Laser Lines with Saturation Spectroscopy,” Opt. Commun. 35, 342 (1980).
[CrossRef]

Z. Naturforsch. (1)

T. Giesen, M. Harter, R. Schieder, G. Winnewisser, K. M. T. Yamada, “High Resolution Spectroscopy Using a Stabilized Diode Laser: the 2ν9 Band of HNO3,” Z. Naturforsch. 43a, 402 (1988).

Other (2)

W. J. Smith, Modern Optical Engineering. The Design of Optical Systems (McGraw-Hill, New York, 1966).

F. R. Petersen, D. G. McDonald, J. D. Cupp, B. L. Danielson, “Accurate Rotational Constants, Frequencies, and Wavelengths from 12C16O2 Lasers Stabilized by Saturated Absorption,” in Laser Spectroscopy, R. G. Brewer, A. Mooradian, Eds. (Plenum, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of our stabilized diode laser spectrometer. The diode laser is frequency locked to the tunable icFPI by means of a feedback loop (detector D1, lock-in amplifier, PI regulator, laser control). The fringes of a frequency-stabilized He–Ne laser which are recorded by detector D2 may be used for a precise calibration of the TDL spectra.

Fig. 2
Fig. 2

(a) Saturated absorption of the P(39) transition of the ν3 band of 192OsO4; (b) pure Doppler broadened absorption line of the same transition. The calibration fringes of the He–Ne laser are shown at the bottom.

Fig. 3
Fig. 3

Explanation of the scanner angles, fringe numbers, etc., used in the text.

Fig. 4
Fig. 4

Small portion of the absorption spectrum of the NH3ν2 band with He–Ne fringes and frequency scale. Also shown is a CO2 laser transition which is used for absolute frequency calibration. The CO2 emission lines were produced in a dc—discharge cell.

Fig. 5
Fig. 5

Wavelength dependence of the calibration parameter a(λ) which mainly describes the influence of dispersion. The error of the data points (*) is always <2 × 10−5; therefore no error bars are shown. When fitting the theoretical curve to the data points the scanner zero position φ0 (which approximately equals the Brewster angle) was the only free parameter.

Fig. 6
Fig. 6

Wavelength dependence of the free spectral range F (in cm−1). When fitting the theoretical curve to the data points the focal length of the two mirrors [L0 in Eq. (B4)] was the free parameter. The deviation of the curve from the data points is always smaller than the error bars (typically 3 × 10−7 cm−1).

Fig. 7
Fig. 7

Theoretical curves of the normalized free spectral range F as a function of the wavelength for NaCl and KBr flats. Note the much smaller wavelength dependence of KBr.

Tables (1)

Tables Icon

Table I Observed Transition Frequencies in (cm−1) of the ν2 Band of NH3 and the (00°2)–(10°1) Band of CO2

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

m λ = 4 L ( φ , λ ) or ν = 1 / λ = m / [ 4 L ( φ , λ ) ] .
F = ν / m .
Δ ν = n F ( φ , λ 0 ) .
N ( Q ) = ( λ r / λ 0 ) Q ,
N ( Q ) = ( λ r / λ 0 ) [ a ( λ 0 ) Q + b ( λ 0 ) Q 2 ] ,
Δ ν = λ r λ 0 F ( 0 , λ 0 ) 1 + c ( λ 0 ) Q [ a ( λ 0 ) + b ( λ 0 ) ( Q 0 + Q ) ] ( Q 0 Q ) .
F ( ν i ) = F ( ν 0 ) + F ( ν 0 ) ( ν i ν 0 ) .
N ( ν i ) N ( ν 0 ) = ν 0 ν i d ν F ( ν ) ν 0 ν i d ν F ( ν 0 ) + F ( ν 0 ) ( ν ν 0 ) A ( ν i ν 0 ) + B ( ν i ν 0 ) 2 ,
F ( ν 0 ) = 1 / A = 0 . 00950017 ( 4 ) cm 1 , F ( ν 0 ) = 2 B / A 2 = 3 . 7 ( 5 ) × 10 8 ,
a ( λ ) = a ( λ 0 ) + a ( λ 0 ) ( λ λ 0 ) .
a ( λ o ) = 0 . 961920 ( 15 ) , a ( λ 0 ) = 5 . 51 ( 3 ) × 10 3 μ m 1 , b ( λ 0 ) = 1 . 874 ( 27 ) × 10 6 , b ( λ 0 ) = 2 . 8 ( 3 ) × 10 7 μ m 1 .
c ( λ 0 ) = 6 . 139 × 10 7 .
m λ 0 = 4 L ( φ 0 , λ 0 ) .
m λ = 4 L ( φ , λ ) = 4 L ( φ , λ 0 ) + 4 L ( φ , λ 0 ) ( λ λ 0 )
Δ ν = 1 / λ 1 / λ 0 = 1 λ 0 L ( φ 0 , λ 0 ) L ( φ , λ 0 ) L ( φ , λ 0 ) L ( φ , λ 0 ) λ 0 .
F = 1 / ( λ 2 m / λ ) .
m / λ = ( 4 / λ 2 ) [ L ( φ , λ ) L ( φ , λ ) λ ] ,
F ( φ , λ 0 ) = 1 4 [ L ( φ , λ 0 ) L ( φ , λ 0 ) λ 0 ] .
Δ ν = ( 4 / λ 0 ) F ( φ , λ 0 ) [ L ( φ 0 , λ 0 ) L ( φ , λ 0 ) ] .
m λ 0 = 4 L ( φ 0 , λ 0 ) ( m + n ) λ 0 = 4 L ( φ , λ 0 ) } n = ( 4 / λ 0 ) [ L ( φ , λ 0 ) L ( φ 0 , λ 0 ) ] .
N ( φ ) = ( 4 / λ 0 ) [ L ( φ , λ 0 ) L ( 0 , λ 0 ) ] ,
Q ( φ ) = ( 4 / λ r ) [ L ( φ , λ r ) L ( 0 , λ r ) ] .
Δ ν = ( λ r / λ 0 ) F ( φ , λ 0 ) [ a ( λ 0 ) + b ( λ 0 ) ( Q 0 + Q ) ] ( Q 0 Q ) .
F ( φ , λ 0 ) = 1 4 [ L ( 0 , λ 0 ) L ( 0 , λ 0 ) λ 0 ] + λ 0 [ N ( Q ) N ( Q ) ] .
F ( φ , λ 0 ) = F ( 0 , λ 0 ) 1 + c ( λ 0 ) Q ,
c ( λ 0 ) = λ r F ( 0 , λ 0 ) [ a ( λ 0 ) a ( λ 0 ) λ 0 ] .
L ( φ , λ ) = L 0 + g ( φ , λ ) .
g ( φ , λ ) = d 1 ( n 2 ( λ ) sin 2 φ cos φ ) + d 2 ( n 2 ( λ ) 1 2 1 / 2 ) .
Q ( φ ) = ( 4 / λ r ) [ g ( φ , λ r ) g ( φ 0 , λ r ) ] ,
cos φ = n 2 ( λ r ) 1 P 2 ( Q ) 2 P ( Q ) , P ( Q ) = Q λ r / ( 4 d 1 ) + n 2 ( λ r ) sin 2 φ 0 cos φ 0 .
a ( λ ) Q + b ( λ ) Q 2 = ( 4 / λ r ) [ g ( φ , λ ) g ( φ 0 , λ ) ] .
a ( λ ) = ( 4 / λ r ) [ g ( φ , λ ) / Q ] | φ ¯ φ 0 , b ( λ ) = ( 2 / λ r ) [ 2 g ( φ , λ ) / Q 2 ] | φ ¯ φ 0 .
F ( φ 0 , λ ) = { 4 [ L 0 + g ( φ 0 , λ ) g ( φ 0 , λ ) λ ] } 1 ,
g ( φ 0 , λ ) = g ( φ 0 , λ ) λ .

Metrics