Abstract

The wideband noise characteristics of a PbEuSe molecular beam epitaxy diode laser have been measured up to 500 MHz. The cutoff of the frequency dependent (1/f type) laser noise contribution was found to be 170 MHz for this particular laser. Above this cutoff frequency the photon shot noise dominates, as was demonstrated. A noise reduction of more than 2 orders of magnitude was observed in the shot noise limited domain when compared with the 1/f noise dominated region below 1 MHz. This finding indicates that a similar 2 orders of magnitude sensitivity improvement can be achieved in tunable diode laser absorption spectroscopy when frequency modulation techniques are applied instead of the more conventional derivative modulation below 1 MHz.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980).
    [CrossRef]
  2. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), p. 163.
  3. D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
    [PubMed]
  4. R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (D. Reidel, Dordrecht, Holland, 1987).
    [CrossRef]
  5. J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, “High Sensitivity Point Monitoring of Atmospheric Gases Employing Tunable Diode Lasers,” Appl. Opt. 17, 1806 (1978).
    [CrossRef] [PubMed]
  6. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-Frequency-Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132 (1986).
    [CrossRef] [PubMed]
  7. D. E. Cooper, J. P. Watjen, “Two-Tone Optical Heterodyne Spectroscopy with a Tunable Lead-Salt Diode Laser,” Opt. Lett. 11, 606 (1986).
    [CrossRef] [PubMed]
  8. D. E. Cooper, R. E. Warren, “Two-Tone Optical Heterodyne Spectroscopy with Diode Lasers: Theory of Line Shapes and Experimental Results,” J. Opt. Soc. Am. B 4, 470 (1987).
    [CrossRef]
  9. D. E. Cooper, R. E. Warren, “Frequency Modulation Spectroscopy with Lead-Salt Diode Lasers: A Comparison of Single-Tone and Two-Tone Techniques,” Appl. Opt. 26, 3726 (1987).
    [CrossRef] [PubMed]
  10. N.-Y. Chou, G. W. Sachse, “Single-Tone and Two-Tone AM–FM Spectral Calculations for Tunable Diode Laser Absorption Spectroscopy,” Appl. Opt. 26, 3584 (1987).
    [CrossRef] [PubMed]
  11. L. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of Approaches to Modulation Spectroscopy with GaAlAs Semiconductor Lasers: Application to Water Vapor,” Appl. Opt. 27, 2071 (1988).
    [CrossRef] [PubMed]
  12. G. C. Bjorklund, “Frequency-Modulation Spectroscopy: A New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15 (1980).
    [CrossRef] [PubMed]
  13. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-Limited Laser Frequency-Modulation Spectroscopy,” J. Opt. Soc. Am. B 2, 1510 (1985).
    [CrossRef]
  14. J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.
  15. N. C. Wong, J. L. Hall, “Servo Control of Amplitude Modulation in FM Spectroscopy: Demonstration of Shot-Noise-Limited Detection,” J. Opt. Soc. Am. B 2, 1527 (1985).
    [CrossRef]
  16. W. Lenth, “Optical Heterodyne Spectroscopy with Frequency-and Amplitude-Modulated Semiconductor Lasers,” Opt. Lett. 8, 575 (1983).
    [CrossRef] [PubMed]
  17. W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045 (1984).
    [CrossRef]
  18. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983).
    [CrossRef]
  19. W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263 (1985).
    [CrossRef]
  20. R. S. Eng, A. W. Mantz, T. R. Todd, “Low-Frequency Noise Characteristics of Pb-Salt Semiconductor Lasers,” Appl. Opt. 18, 1088 (1979).
    [CrossRef] [PubMed]
  21. J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97 (1928).
    [CrossRef]
  22. W. Budde, Physical Detectors of Optical Radiation (Academic, Orlando, FL, 1983).
  23. C. E. Hurwitz, “Detectors for the 1.1 and 1.6 Micrometer Wavelength Region,” Opt. Eng. 20, 658 (1981).
  24. W. Schottky, “Über spontane Stromschwankungen in verschie-denen Elektrizitätsleitern,” Ann. Phys. (Leipzig) 57, 541 (1918).
  25. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).
  26. Fraunhofer-Institute for Metrology, Heidenhofstrasse 8, D-7800 Freiburg, F.R. Germany,
  27. H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev. 110 (1928).
  28. The expected 6-dB noise reduction in the 1/f region is not seen due to attenuator induced feedback noise adding to the expected 6-dB reduction.

1988

1987

1986

1985

1984

W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045 (1984).
[CrossRef]

1983

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983).
[CrossRef]

W. Lenth, “Optical Heterodyne Spectroscopy with Frequency-and Amplitude-Modulated Semiconductor Lasers,” Opt. Lett. 8, 575 (1983).
[CrossRef] [PubMed]

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

1981

C. E. Hurwitz, “Detectors for the 1.1 and 1.6 Micrometer Wavelength Region,” Opt. Eng. 20, 658 (1981).

1980

G. C. Bjorklund, “Frequency-Modulation Spectroscopy: A New Method for Measuring Weak Absorptions and Dispersions,” Opt. Lett. 5, 15 (1980).
[CrossRef] [PubMed]

R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980).
[CrossRef]

1979

1978

1928

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97 (1928).
[CrossRef]

H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev. 110 (1928).

1918

W. Schottky, “Über spontane Stromschwankungen in verschie-denen Elektrizitätsleitern,” Ann. Phys. (Leipzig) 57, 541 (1918).

Baer, T.

J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.

Ballik, E. A.

Bjorklund, G. C.

Budde, W.

W. Budde, Physical Detectors of Optical Radiation (Academic, Orlando, FL, 1983).

Butler, J. F.

R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980).
[CrossRef]

Carlisle, C. B.

Chou, N.-Y.

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983).
[CrossRef]

Cooper, D. E.

Crowe, D. G.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Dereniak, E. L.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

El-Sherbiny, M.

Eng, R. S.

R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980).
[CrossRef]

R. S. Eng, A. W. Mantz, T. R. Todd, “Low-Frequency Noise Characteristics of Pb-Salt Semiconductor Lasers,” Appl. Opt. 18, 1088 (1979).
[CrossRef] [PubMed]

Gallagher, T. F.

Garside, B. K.

Gehrtz, M.

Hall, J. L.

N. C. Wong, J. L. Hall, “Servo Control of Amplitude Modulation in FM Spectroscopy: Demonstration of Shot-Noise-Limited Detection,” J. Opt. Soc. Am. B 2, 1527 (1985).
[CrossRef]

J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.

Hallberg, L.

J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.

Hastie, D. R.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Hinkley, E. D.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), p. 163.

Hurwitz, C. E.

C. E. Hurwitz, “Detectors for the 1.1 and 1.6 Micrometer Wavelength Region,” Opt. Eng. 20, 658 (1981).

Iguchi, T.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Johnson, J. B.

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97 (1928).
[CrossRef]

Johnston, H. S.

Lenth, W.

M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-Frequency-Modulation Spectroscopy with a Lead-Salt Diode Laser,” Opt. Lett. 11, 132 (1986).
[CrossRef] [PubMed]

W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263 (1985).
[CrossRef]

W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045 (1984).
[CrossRef]

W. Lenth, “Optical Heterodyne Spectroscopy with Frequency-and Amplitude-Modulated Semiconductor Lasers,” Opt. Lett. 8, 575 (1983).
[CrossRef] [PubMed]

Linden, K. J.

R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980).
[CrossRef]

Mackay, G. I.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Mantz, A. W.

Menzies, R. T.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), p. 163.

Nyquist, H.

H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev. 110 (1928).

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983).
[CrossRef]

Reid, J.

Ridley, B. A.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Riris, H.

Robinson, H. G.

J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.

Sachse, G. W.

Schiff, H. I.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

Schottky, W.

W. Schottky, “Über spontane Stromschwankungen in verschie-denen Elektrizitätsleitern,” Ann. Phys. (Leipzig) 57, 541 (1918).

Shewchun, J.

Todd, T. R.

Wang, L.

Warren, R. E.

Watjen, J. P.

Webster, C. R.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), p. 163.

Whittaker, E. A.

Wong, N. C.

Young, A. T.

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983).
[CrossRef]

Ann. Phys. (Leipzig)

W. Schottky, “Über spontane Stromschwankungen in verschie-denen Elektrizitätsleitern,” Ann. Phys. (Leipzig) 57, 541 (1918).

Appl. Opt.

Appl. Phys. Lett.

W. Lenth, M. Gehrtz, “Sensitive Detection of NO2 Using High Frequency Heterodyne Spectroscopy with a GaAlAs Diode Laser,” Appl. Phys. Lett. 47, 1263 (1985).
[CrossRef]

Environ. Sci. Technol.

D. R. Hastie, G. I. Mackay, T. Iguchi, B. A. Ridley, H. I. Schiff, “Tunable Diode Laser Systems for Measuring Trace Gases in Tropospheric Air,” Environ. Sci. Technol. 17, 352A (1983).
[PubMed]

IEEE J. Quantum Electron.

W. Lenth, “High Frequency Heterodyne Spectroscopy with Current-Modulated Diode Lasers,” IEEE J. Quantum Electron. QE-20, 1045 (1984).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High Frequency Wavelength Modulation Spectroscopy with Diode Lasers,” Opt. Commun. 44, 175 (1983).
[CrossRef]

Opt. Eng.

R. S. Eng, J. F. Butler, K. J. Linden, “Tunable Diode Laser Spectroscopy: Invited Review,” Opt. Eng. 19, 945 (1980).
[CrossRef]

C. E. Hurwitz, “Detectors for the 1.1 and 1.6 Micrometer Wavelength Region,” Opt. Eng. 20, 658 (1981).

Opt. Lett.

Phys. Rev.

H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev. 110 (1928).

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97 (1928).
[CrossRef]

Other

W. Budde, Physical Detectors of Optical Radiation (Academic, Orlando, FL, 1983).

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared Laser Absorption: Theory and Applications,” in Laser Remote Chemical Analysis, R. M. Measures, Ed. (Wiley, New York, 1988), p. 163.

R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (D. Reidel, Dordrecht, Holland, 1987).
[CrossRef]

The expected 6-dB noise reduction in the 1/f region is not seen due to attenuator induced feedback noise adding to the expected 6-dB reduction.

J. L. Hall, T. Baer, L. Hallberg, H. G. Robinson, “Precision Spectroscopy and Laser Frequency Control Using FM Sideband Optical Heterodyne Techniques,” in Laser Spectroscopy V, A. R. W. McKellar, T. Oka, B. P. Stoicheff, Eds. (Springer-Verlag, Berlin, 1981), p. 16.

E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).

Fraunhofer-Institute for Metrology, Heidenhofstrasse 8, D-7800 Freiburg, F.R. Germany,

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the investigation of wideband noise characteristics of lead-salt diode lasers: upper, determination of the noise spectra with and without an attenuator; lower, determination of the laser output power.

Fig. 2
Fig. 2

Typical wideband noise spectrum of a lead-salt diode laser.

Fig. 3
Fig. 3

Lead-salt diode laser noise spectrum measured with a spectrum analyzer with 0.3-MHz bandwidth and averaged over 256 scans. The lower trace shows the thermal noise level of the MCT detector and preamplifier combination determined with the laser switched off. The upper trace shows the noise of the laser without any modulation. The very low frequency part of this trace is linearly extrapolated to dc. The line at 9.3 dB shows the calculated shot noise level above the thermal noise. The potential SNR improvement by moving from low to high frequencies is >40 dB.

Fig. 4
Fig. 4

Noise spectra of the same diode laser at the same operating conditions as in Fig. 3. Additionally, the noise reduction by 0.33 attenuation of the incident laser power is shown indicating the shot noise limited regime above 170 MHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

SNR = P signal ( P 1 / f 2 + P s n 2 + P t n 2 ) 1 / 2 ,
i th 2 = 4 k T R eff Δ f .
i s n 2 = 2 e i d c ¯ Δ f ,
i d c ¯ = e η P laser h · ν ,
i 1 / f 2 = c i d c 2 f b Δ f ,
P min = 2 k T h c e 2 η λ R eff ,
P s n + P t h P t h = e 2 η λ P R eff 2 k h c T + 1 = 9 . 3 dB .

Metrics