Abstract

We have used a 100-mW cw laser diode array to amplify the light from a low power, single stripe diode laser (both lasers commercially available). The input light was spectrally narrowed and frequency stabilized to <300 kHz using optical feedback from a Fabry-Perot cavity, and the amplified beam had the same spectral characteristics. Also, the ~90-mW amplified beam had a single diffraction-limited spatial mode corresponding to the full 100-μm width of the array, indicating that all its stripes were coherent. When viewing the output of the free-running laser array, we observe that the input light causes its output spectrum and spatial distribution to be dramatically narrowed. We have tested a simple quantitative model of this process.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Dahmani, L. W. Hollberg, R. E. Drullinger, “Frequency Stabilization of Semiconductor Lasers by Resonant Optical Feedback,” Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  2. We acknowledge the help of Brian Sheehy and Shahram Hatamian in these experiments.
  3. R. Lang, “Injection Locking Properties of a Semiconductor Laser,” IEEE J. Quantum Electron. QE-18, 976 (1982).
    [CrossRef]
  4. L. Goldberg et al., “Injection Locking of Coupled-Stripe Diode Laser Arrays,” Appl. Phys. Lett. 46, 236 (1985).
    [CrossRef]
  5. J. Hohimer et al., “Single Channel Injection Locking of Diode Laser Array with cw Dye Laser,” Appl. Phys. Lett. 47, 1244 (1985).
    [CrossRef]
  6. J. R. Andrews et al., “Individual Spatial Modes of a Phase-Locked Injection Laser Array Observed Through Spectral Selection and Selected with an External Mirror,” J. Appl. Phys. 58, 2777 (1985).
    [CrossRef]
  7. L. Goldberg, J. Weller, “Injection-Locked Operation of a 20-Element Coupled Stripe Array,” Electron. Lett. 22, 858 (1986).
    [CrossRef]
  8. G. R. Hadley, A. Owyoung, J. P. Hohimer, “Modeling of Injection-Locking Phenomena in Diode-Laser Arrays,” Opt. Lett. 11, 144 (1986).
    [CrossRef] [PubMed]
  9. L. Goldberg et al., “Frequency Modulation Characteristics of Coupled-Stripe Laser Diode Array,” IEEE J. Quantum Electron. QE-22, 513 (1986).
    [CrossRef]
  10. J. Hohimer et al., “Interelement Coupling in Gain Guided Diode Laser Arrays,” Appl. Phys. Lett. 48, 1504 (1986).
    [CrossRef]
  11. L. Goldberg, J. Weller, “Injection-Locking and Single-Mode Fiber Coupling of a 40-Element Laser Diode Array,” Appl. Phys. Lett. 50, 1713 (1987).
    [CrossRef]
  12. H. Hemmati, “Single Longitudinal Mode Operation of Semiconductor Laser Arrays with Etalon Feedback,” Appl. Phys. Lett. 51, 224 (1987).
    [CrossRef]
  13. L. Goldberg, J. Weller, “Single Lobe Operation of a 40-Element Laser Array in an External Ring Laser Cavity,” Appl. Phys. Lett. 51, 871 (1987).
    [CrossRef]
  14. J. R. Andrews et al., “Diffraction Effects in a Diode Array Travelling Wave Amplifier,” Appl. Phys. Lett. 51, 1676 (1987).
    [CrossRef]
  15. M. K. Chun, T. L. Whitman, D. G. Soenksen, “Far-field Behavior of Injection-Locked Semiconductor Laser Arrays,” Appl. Opt. 26, 4518 (1987).
    [CrossRef] [PubMed]
  16. J. R. Andrews, “Variable Focus Due to Refractive Index Gradients in a Diode Array Travelling Wave Amplifier,” J. Appl. Phys. 64, 2134 (1988).
    [CrossRef]
  17. S.-Q. Shang, H. Metcalf, “Amplification of Diode Laser Light,” Bull. Am. Phys. Soc. 33, 1637 (1988), ML11.
  18. We acknowledge the design and construction of the isolator by Alain Aspect of Ecole Normale Superieure, Paris.
  19. Use of the back facet is for convenience only.
  20. As Ref. 11 suggests, there is obviously a potential for a ring laser configuration; Ref. 13 describes a ring laser implemented by a fiber.
  21. A. Owyoung, Sandia National Laboratories; private communication. The frequency scales in Refs. 5, 8, and 10 are not absolute.
  22. M. Nathan et al., “Oscillations in GaAs Spontaneous Emission in Fabry-Perot Cavities,” Phys. Rev. Lett. 11, 152 (1963).
    [CrossRef]
  23. F. Stern, “Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors,” Phys. Rev. 133, A1653 (1964).
    [CrossRef]
  24. D. Mehuys, A. Yariv, “Coupled-Wave Theory of Multiple-Stripe Semiconductor Injection Lasers,” Opt. Lett. 13, 571 (1988).
    [CrossRef] [PubMed]
  25. H. C. Casey et al., “Refractive Index of Ga1−xAlxAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63 (1974).
    [CrossRef]
  26. M. Afromowitz, “Refractive Index of Ga1−xAlxAs,” Solid State Commun. 15, 59 (1974).
    [CrossRef]

1988 (3)

J. R. Andrews, “Variable Focus Due to Refractive Index Gradients in a Diode Array Travelling Wave Amplifier,” J. Appl. Phys. 64, 2134 (1988).
[CrossRef]

S.-Q. Shang, H. Metcalf, “Amplification of Diode Laser Light,” Bull. Am. Phys. Soc. 33, 1637 (1988), ML11.

D. Mehuys, A. Yariv, “Coupled-Wave Theory of Multiple-Stripe Semiconductor Injection Lasers,” Opt. Lett. 13, 571 (1988).
[CrossRef] [PubMed]

1987 (6)

M. K. Chun, T. L. Whitman, D. G. Soenksen, “Far-field Behavior of Injection-Locked Semiconductor Laser Arrays,” Appl. Opt. 26, 4518 (1987).
[CrossRef] [PubMed]

B. Dahmani, L. W. Hollberg, R. E. Drullinger, “Frequency Stabilization of Semiconductor Lasers by Resonant Optical Feedback,” Opt. Lett. 12, 876 (1987).
[CrossRef] [PubMed]

L. Goldberg, J. Weller, “Injection-Locking and Single-Mode Fiber Coupling of a 40-Element Laser Diode Array,” Appl. Phys. Lett. 50, 1713 (1987).
[CrossRef]

H. Hemmati, “Single Longitudinal Mode Operation of Semiconductor Laser Arrays with Etalon Feedback,” Appl. Phys. Lett. 51, 224 (1987).
[CrossRef]

L. Goldberg, J. Weller, “Single Lobe Operation of a 40-Element Laser Array in an External Ring Laser Cavity,” Appl. Phys. Lett. 51, 871 (1987).
[CrossRef]

J. R. Andrews et al., “Diffraction Effects in a Diode Array Travelling Wave Amplifier,” Appl. Phys. Lett. 51, 1676 (1987).
[CrossRef]

1986 (4)

L. Goldberg, J. Weller, “Injection-Locked Operation of a 20-Element Coupled Stripe Array,” Electron. Lett. 22, 858 (1986).
[CrossRef]

L. Goldberg et al., “Frequency Modulation Characteristics of Coupled-Stripe Laser Diode Array,” IEEE J. Quantum Electron. QE-22, 513 (1986).
[CrossRef]

J. Hohimer et al., “Interelement Coupling in Gain Guided Diode Laser Arrays,” Appl. Phys. Lett. 48, 1504 (1986).
[CrossRef]

G. R. Hadley, A. Owyoung, J. P. Hohimer, “Modeling of Injection-Locking Phenomena in Diode-Laser Arrays,” Opt. Lett. 11, 144 (1986).
[CrossRef] [PubMed]

1985 (3)

L. Goldberg et al., “Injection Locking of Coupled-Stripe Diode Laser Arrays,” Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

J. Hohimer et al., “Single Channel Injection Locking of Diode Laser Array with cw Dye Laser,” Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

J. R. Andrews et al., “Individual Spatial Modes of a Phase-Locked Injection Laser Array Observed Through Spectral Selection and Selected with an External Mirror,” J. Appl. Phys. 58, 2777 (1985).
[CrossRef]

1982 (1)

R. Lang, “Injection Locking Properties of a Semiconductor Laser,” IEEE J. Quantum Electron. QE-18, 976 (1982).
[CrossRef]

1974 (2)

H. C. Casey et al., “Refractive Index of Ga1−xAlxAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63 (1974).
[CrossRef]

M. Afromowitz, “Refractive Index of Ga1−xAlxAs,” Solid State Commun. 15, 59 (1974).
[CrossRef]

1964 (1)

F. Stern, “Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors,” Phys. Rev. 133, A1653 (1964).
[CrossRef]

1963 (1)

M. Nathan et al., “Oscillations in GaAs Spontaneous Emission in Fabry-Perot Cavities,” Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Afromowitz, M.

M. Afromowitz, “Refractive Index of Ga1−xAlxAs,” Solid State Commun. 15, 59 (1974).
[CrossRef]

Andrews, J. R.

J. R. Andrews, “Variable Focus Due to Refractive Index Gradients in a Diode Array Travelling Wave Amplifier,” J. Appl. Phys. 64, 2134 (1988).
[CrossRef]

J. R. Andrews et al., “Diffraction Effects in a Diode Array Travelling Wave Amplifier,” Appl. Phys. Lett. 51, 1676 (1987).
[CrossRef]

J. R. Andrews et al., “Individual Spatial Modes of a Phase-Locked Injection Laser Array Observed Through Spectral Selection and Selected with an External Mirror,” J. Appl. Phys. 58, 2777 (1985).
[CrossRef]

Casey, H. C.

H. C. Casey et al., “Refractive Index of Ga1−xAlxAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63 (1974).
[CrossRef]

Chun, M. K.

Dahmani, B.

Drullinger, R. E.

Goldberg, L.

L. Goldberg, J. Weller, “Single Lobe Operation of a 40-Element Laser Array in an External Ring Laser Cavity,” Appl. Phys. Lett. 51, 871 (1987).
[CrossRef]

L. Goldberg, J. Weller, “Injection-Locking and Single-Mode Fiber Coupling of a 40-Element Laser Diode Array,” Appl. Phys. Lett. 50, 1713 (1987).
[CrossRef]

L. Goldberg, J. Weller, “Injection-Locked Operation of a 20-Element Coupled Stripe Array,” Electron. Lett. 22, 858 (1986).
[CrossRef]

L. Goldberg et al., “Frequency Modulation Characteristics of Coupled-Stripe Laser Diode Array,” IEEE J. Quantum Electron. QE-22, 513 (1986).
[CrossRef]

L. Goldberg et al., “Injection Locking of Coupled-Stripe Diode Laser Arrays,” Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Hadley, G. R.

Hemmati, H.

H. Hemmati, “Single Longitudinal Mode Operation of Semiconductor Laser Arrays with Etalon Feedback,” Appl. Phys. Lett. 51, 224 (1987).
[CrossRef]

Hohimer, J.

J. Hohimer et al., “Interelement Coupling in Gain Guided Diode Laser Arrays,” Appl. Phys. Lett. 48, 1504 (1986).
[CrossRef]

J. Hohimer et al., “Single Channel Injection Locking of Diode Laser Array with cw Dye Laser,” Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Hohimer, J. P.

Hollberg, L. W.

Lang, R.

R. Lang, “Injection Locking Properties of a Semiconductor Laser,” IEEE J. Quantum Electron. QE-18, 976 (1982).
[CrossRef]

Mehuys, D.

Metcalf, H.

S.-Q. Shang, H. Metcalf, “Amplification of Diode Laser Light,” Bull. Am. Phys. Soc. 33, 1637 (1988), ML11.

Nathan, M.

M. Nathan et al., “Oscillations in GaAs Spontaneous Emission in Fabry-Perot Cavities,” Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Owyoung, A.

G. R. Hadley, A. Owyoung, J. P. Hohimer, “Modeling of Injection-Locking Phenomena in Diode-Laser Arrays,” Opt. Lett. 11, 144 (1986).
[CrossRef] [PubMed]

A. Owyoung, Sandia National Laboratories; private communication. The frequency scales in Refs. 5, 8, and 10 are not absolute.

Shang, S.-Q.

S.-Q. Shang, H. Metcalf, “Amplification of Diode Laser Light,” Bull. Am. Phys. Soc. 33, 1637 (1988), ML11.

Soenksen, D. G.

Stern, F.

F. Stern, “Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors,” Phys. Rev. 133, A1653 (1964).
[CrossRef]

Weller, J.

L. Goldberg, J. Weller, “Single Lobe Operation of a 40-Element Laser Array in an External Ring Laser Cavity,” Appl. Phys. Lett. 51, 871 (1987).
[CrossRef]

L. Goldberg, J. Weller, “Injection-Locking and Single-Mode Fiber Coupling of a 40-Element Laser Diode Array,” Appl. Phys. Lett. 50, 1713 (1987).
[CrossRef]

L. Goldberg, J. Weller, “Injection-Locked Operation of a 20-Element Coupled Stripe Array,” Electron. Lett. 22, 858 (1986).
[CrossRef]

Whitman, T. L.

Yariv, A.

Appl. Opt. (1)

Appl. Phys. Lett. (8)

H. C. Casey et al., “Refractive Index of Ga1−xAlxAs Between 1.2 and 1.8 eV,” Appl. Phys. Lett. 24, 63 (1974).
[CrossRef]

L. Goldberg et al., “Injection Locking of Coupled-Stripe Diode Laser Arrays,” Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

J. Hohimer et al., “Single Channel Injection Locking of Diode Laser Array with cw Dye Laser,” Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

J. Hohimer et al., “Interelement Coupling in Gain Guided Diode Laser Arrays,” Appl. Phys. Lett. 48, 1504 (1986).
[CrossRef]

L. Goldberg, J. Weller, “Injection-Locking and Single-Mode Fiber Coupling of a 40-Element Laser Diode Array,” Appl. Phys. Lett. 50, 1713 (1987).
[CrossRef]

H. Hemmati, “Single Longitudinal Mode Operation of Semiconductor Laser Arrays with Etalon Feedback,” Appl. Phys. Lett. 51, 224 (1987).
[CrossRef]

L. Goldberg, J. Weller, “Single Lobe Operation of a 40-Element Laser Array in an External Ring Laser Cavity,” Appl. Phys. Lett. 51, 871 (1987).
[CrossRef]

J. R. Andrews et al., “Diffraction Effects in a Diode Array Travelling Wave Amplifier,” Appl. Phys. Lett. 51, 1676 (1987).
[CrossRef]

Bull. Am. Phys. Soc. (1)

S.-Q. Shang, H. Metcalf, “Amplification of Diode Laser Light,” Bull. Am. Phys. Soc. 33, 1637 (1988), ML11.

Electron. Lett. (1)

L. Goldberg, J. Weller, “Injection-Locked Operation of a 20-Element Coupled Stripe Array,” Electron. Lett. 22, 858 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Goldberg et al., “Frequency Modulation Characteristics of Coupled-Stripe Laser Diode Array,” IEEE J. Quantum Electron. QE-22, 513 (1986).
[CrossRef]

R. Lang, “Injection Locking Properties of a Semiconductor Laser,” IEEE J. Quantum Electron. QE-18, 976 (1982).
[CrossRef]

J. Appl. Phys. (2)

J. R. Andrews et al., “Individual Spatial Modes of a Phase-Locked Injection Laser Array Observed Through Spectral Selection and Selected with an External Mirror,” J. Appl. Phys. 58, 2777 (1985).
[CrossRef]

J. R. Andrews, “Variable Focus Due to Refractive Index Gradients in a Diode Array Travelling Wave Amplifier,” J. Appl. Phys. 64, 2134 (1988).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

F. Stern, “Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors,” Phys. Rev. 133, A1653 (1964).
[CrossRef]

Phys. Rev. Lett. (1)

M. Nathan et al., “Oscillations in GaAs Spontaneous Emission in Fabry-Perot Cavities,” Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Solid State Commun. (1)

M. Afromowitz, “Refractive Index of Ga1−xAlxAs,” Solid State Commun. 15, 59 (1974).
[CrossRef]

Other (5)

We acknowledge the design and construction of the isolator by Alain Aspect of Ecole Normale Superieure, Paris.

Use of the back facet is for convenience only.

As Ref. 11 suggests, there is obviously a potential for a ring laser configuration; Ref. 13 describes a ring laser implemented by a fiber.

A. Owyoung, Sandia National Laboratories; private communication. The frequency scales in Refs. 5, 8, and 10 are not absolute.

We acknowledge the help of Brian Sheehy and Shahram Hatamian in these experiments.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the apparatus.

Fig. 2
Fig. 2

Spectra of (a) the free-running laser array and (b) the injection locked laser array measured with a 2-GHz FSR spectrum analyzer. Note the difference in scale. Photo (c) shows the beat of an injection locked array with an independent laser spectrally narrowed and stabilized by the method of Ref. 1. The vertical scale is 80 dB from top to bottom (S/N = 1000) and the horizontal axis is 50 MHz from end to end. The measurement was limited by the 300-kHz resolution of the rf spectrum analyzer.

Fig. 3
Fig. 3

Spectra from a 1/3-m spectrometer of (a) the free-running array and (b) the injection locked array. Note that injection locking can also work on modes normally so weak that they do not appear in the spectrum of the free-running array [scales of (a) and (b) are the same].

Fig. 4
Fig. 4

(a) Spatial pattern of the output of the free-running array focused onto a Reticon diode array (256 channels on 25-μm centers). (b) Spatial effect of injection locking.

Fig. 5
Fig. 5

(a) Spatial pattern when injection locking is achieved with only spherical optics, thereby exciting several smaller peaks. When a cylindrical lens is used to focus the light better onto a single channel, these peaks may be individually selected by changing angles (b).

Fig. 6
Fig. 6

Measured (triangles) and calculated (circles) values of θ e vs j. Equation (2) is used directly with no free parameters. Obviously a small shift of the refractive index would remove most of the systematic differences.

Fig. 7
Fig. 7

Angular tuning of the main peak and three of the secondary peaks when changing the master laser frequency. The solid lines come from Eq. (3) with no adjustable parameters except for a tuning offset. Measurement errors are approximately the size of the symbols.

Tables (1)

Tables Icon

Table I Calculated Values of e /dλ (deg/nm) from Eq. (3) and Values Determined by Linear Least-Squares Fit to Data Plotted in Fig. 7

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 k e L cos θ s = 2 π j e ,
cos θ s = 1 + Δ k / Δ k e + λ j / 2 n L ,
d θ e / d λ n n / λ θ e = ( n L ) ( n / λ 3 j L ) ,

Metrics