Abstract

A simple interference microscope based on a fringe scanning technique is described. This interference microscope can provide quantitative phase information of a phase object. The theory and experimental results are presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Sommargren, B. J. Thompson, “Linear Phase Microscopy,” Appl. Opt. 12, 2130 (1973).
    [CrossRef] [PubMed]
  2. J. Krasinski, D. F. Heller, O. Kafri, “Phase Object Microscopy Using Moire Deflectometry,” Appl. Opt. 24, 3032 (1985).
    [CrossRef] [PubMed]
  3. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13, 2693 (1974).
    [CrossRef] [PubMed]
  4. J. C. Wyant, “Use of an ac Heterodyne Lateral Shear Interferometer with Real-Time Wavefront Correction Systems,” Appl. Opt. 14, 2622 (1975).
    [CrossRef] [PubMed]
  5. K. Tatsuno, Y. Tsunoda, “Diode Laser Direct Modulation Heterodyne Interferometer,” Appl. Opt. 26, 37 (1987).
    [CrossRef] [PubMed]
  6. Y. Ishii, J. Chen, K. Murata, “Digital Phase-Measuring Interferometry with a Tunable Laser Diode,” Opt. Lett. 12, 233 (1987).
    [CrossRef] [PubMed]
  7. M. Kawamura, “Transmitted Dual-Beam Interference Microscope,” Japanese Pat.1,020,378 (1980).
  8. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital Wave-Front Measuring Interferometry: Some Systematic Errors,” Appl. Opt. 22, 3421 (1983).
    [CrossRef] [PubMed]
  9. H. Kikuta, K. Iwata, R. Nagata, “Absolute Distance Measurement by Wavelength Shift Interferometry with a Laser Diode: Some Systematic Error Sources,” Appl. Opt. 26, 1654 (1987).
    [CrossRef] [PubMed]

1987 (3)

1985 (1)

1983 (1)

1975 (1)

1974 (1)

1973 (1)

Brangaccio, D. J.

Bruning, J. H.

Burow, R.

Chen, J.

Elssner, K.-E.

Gallagher, J. E.

Grzanna, J.

Heller, D. F.

Herriott, D. R.

Ishii, Y.

Iwata, K.

Kafri, O.

Kawamura, M.

M. Kawamura, “Transmitted Dual-Beam Interference Microscope,” Japanese Pat.1,020,378 (1980).

Kikuta, H.

Krasinski, J.

Merkel, K.

Murata, K.

Nagata, R.

Rosenfeld, D. P.

Schwider, J.

Sommargren, G. E.

Spolaczyk, R.

Tatsuno, K.

Thompson, B. J.

Tsunoda, Y.

White, A. D.

Wyant, J. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the direct phase measuring interference microscope with a laser diode as both a coherent light source and a phase shifter.

Fig. 2
Fig. 2

Experimental results of testing a small phase object made from an onionskin: (a) raw interference fringe patterns with π/2 relative phase shift introduced by changing the injection current to the laser diode; (b) 3-D plot of the phase distribution.

Fig. 3
Fig. 3

Experimental results of measuring a human uterine cancer cell in vivo (a) interferometric microgram; (b) 3-D map of the phase.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , L ) = a ( x , y ) + b ( x , y ) cos { 2 π λ [ W ( x , y ) L ] } ,
Φ = Φ 0 + Δ Φ = 2 π λ 0 + Δ λ [ W ( x , y ) ( n λ 1 ) t ] = 2 π λ 0 [ W ( x , y ) ( n λ 0 1 ) t ] + Δ Φ ,
Δ Φ = 2 π λ 0 ( d W d λ d n λ d λ t W λ 0 + n λ 0 1 λ 0 t ) · Δ λ,
Δ Φ = 2 π λ 0 t ( n λ 0 1 λ 0 d n λ d λ ) · α · Δ i .
I ( x , y , Δ Φ ) = a ( x , y ) + b ( x , y ) cos ( Φ 0 + Δ Φ ) .
Φ 0 ( x , y ) = tan 1 I 4 I 2 I 1 I 3 ,

Metrics