Abstract

The signature vector method is target pattern rotation-invariant but does not discriminate well against many other patterns with a similar vector but different shapes.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y-N. Hsu, H. H. Arsenault, G. April, “Rotation-Invariant Digital Pattern Recognition Using Circular Harmonic Expansion,” Appl. Opt. 21, 4012–4015 (1982).
    [Crossref] [PubMed]
  2. Y-N. Hsu, H. H. Arsenault, “Optical Pattern Recognition Using Circular Harmonic Expansion,” Appl. Opt. 21, 4016–4019 (1982).
    [Crossref] [PubMed]
  3. H. H. Arsenault, Y-N Hsu, “Rotation-Invariant Discrimination Between Almost Similar Objects,” Appl. Opt. 22, 130–132 (1983).
    [Crossref] [PubMed]
  4. R. Wu, H. Stark, “Rotation-Invariant Pattern Recognition Using a Vector Reference,” Appl. Opt. 23, 838–840 (1984).
    [Crossref] [PubMed]
  5. R. Wu, H. Stark, “Rotation-Invariant Pattern Recognition Using Optimum Feature Extraction,” Appl. Opt. 24, 179–184 (1985).
    [Crossref] [PubMed]

1985 (1)

1984 (1)

1983 (1)

1982 (2)

April, G.

Arsenault, H. H.

Hsu, Y-N

Hsu, Y-N.

Stark, H.

Wu, R.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Two different objects having the same signature vector.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f ( r , ϕ ) = n = f n ( r ) exp ( j n ϕ ) ,
f n ( r ) = 1 2 π 0 2 π f ( r , ϕ ) exp ( j n ϕ ) d ϕ .
R n = 2 π 0 | f n ( r ) | 2 r d r .
R = ( | R 1 | , | R 2 | , , | R N | ) .
C = ( | C 1 | , | C 2 | , , | C N | ) .
X = R C .

Metrics