Abstract

A relative amplitude stability of ±0.013% and a relative frequency stability of ±3.5 × 10−10 are achieved over a period of 10 min or longer for a commercial single frequency, internal mirror He–Ne laser.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Dorsey, R. J. Hocken, M. Horowitz, “A Low Cost Laser Interferometer System for Machine Tool Applications,” Precis. Eng. 5, 29 (1983).
    [CrossRef]
  2. A. Sasaki, T. Hayashi, “Amplitude and Frequency Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 21, 1455 (1982).
    [CrossRef]
  3. A. Sasaki, “A Simple Method for Single-Frequency Operation and Amplitude- and Frequency-Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 22, 1538 (1983).
    [CrossRef]
  4. A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous Output-and Frequency-Stabilization and Single-Frequency Operation of an Internal-Mirror He–Ne Laser by Controlling by the Discharge Current,” Jpn. J. Appl. Phys. 23, 593 (1984).
    [CrossRef]
  5. C.-L. Pan, P.-Y. Jean, “Stabilization of Internal-Mirror He–Ne Lasers,” Appl. Opt. 25, 2126 (1986).
    [CrossRef] [PubMed]
  6. C.-L. Pan, P.-Y. Jean, “Improved Performance of an Internal Mirror He–Ne Laser (λ = 633 nm) Stabilized by the Total Power Method,” Jpn. J. Appl. Phys. 26, 1384 (1987).
    [CrossRef]
  7. K. Seta, S. Iwasaki, “Frequency Stabilization of a HeNe Laser Using a Thin Film Heater Coated on the Laser Tube,” Opt. Commun. 55, 367 (1985).
    [CrossRef]
  8. T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency Stability Measurements on Polarization-Stabilized He–Ne Lasers,” Appl. Opt. 27, 1285 (1988).
    [CrossRef] [PubMed]
  9. A. Sasaki, A. Ogiwara, “He–Ne Laser-Beam Deviation with Thermal Distortion,” Rev. Laser Eng. 14, 946 (1986), in Japanese.
    [CrossRef]

1988 (1)

1987 (1)

C.-L. Pan, P.-Y. Jean, “Improved Performance of an Internal Mirror He–Ne Laser (λ = 633 nm) Stabilized by the Total Power Method,” Jpn. J. Appl. Phys. 26, 1384 (1987).
[CrossRef]

1986 (2)

A. Sasaki, A. Ogiwara, “He–Ne Laser-Beam Deviation with Thermal Distortion,” Rev. Laser Eng. 14, 946 (1986), in Japanese.
[CrossRef]

C.-L. Pan, P.-Y. Jean, “Stabilization of Internal-Mirror He–Ne Lasers,” Appl. Opt. 25, 2126 (1986).
[CrossRef] [PubMed]

1985 (1)

K. Seta, S. Iwasaki, “Frequency Stabilization of a HeNe Laser Using a Thin Film Heater Coated on the Laser Tube,” Opt. Commun. 55, 367 (1985).
[CrossRef]

1984 (1)

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous Output-and Frequency-Stabilization and Single-Frequency Operation of an Internal-Mirror He–Ne Laser by Controlling by the Discharge Current,” Jpn. J. Appl. Phys. 23, 593 (1984).
[CrossRef]

1983 (2)

A. Sasaki, “A Simple Method for Single-Frequency Operation and Amplitude- and Frequency-Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 22, 1538 (1983).
[CrossRef]

D. Dorsey, R. J. Hocken, M. Horowitz, “A Low Cost Laser Interferometer System for Machine Tool Applications,” Precis. Eng. 5, 29 (1983).
[CrossRef]

1982 (1)

A. Sasaki, T. Hayashi, “Amplitude and Frequency Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 21, 1455 (1982).
[CrossRef]

Barger, R. L.

Dorsey, D.

D. Dorsey, R. J. Hocken, M. Horowitz, “A Low Cost Laser Interferometer System for Machine Tool Applications,” Precis. Eng. 5, 29 (1983).
[CrossRef]

Faller, J. E.

Godwin, H. M.

Hall, J. L.

Hayashi, T.

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous Output-and Frequency-Stabilization and Single-Frequency Operation of an Internal-Mirror He–Ne Laser by Controlling by the Discharge Current,” Jpn. J. Appl. Phys. 23, 593 (1984).
[CrossRef]

A. Sasaki, T. Hayashi, “Amplitude and Frequency Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 21, 1455 (1982).
[CrossRef]

Hocken, R. J.

D. Dorsey, R. J. Hocken, M. Horowitz, “A Low Cost Laser Interferometer System for Machine Tool Applications,” Precis. Eng. 5, 29 (1983).
[CrossRef]

Horowitz, M.

D. Dorsey, R. J. Hocken, M. Horowitz, “A Low Cost Laser Interferometer System for Machine Tool Applications,” Precis. Eng. 5, 29 (1983).
[CrossRef]

Iwasaki, S.

K. Seta, S. Iwasaki, “Frequency Stabilization of a HeNe Laser Using a Thin Film Heater Coated on the Laser Tube,” Opt. Commun. 55, 367 (1985).
[CrossRef]

Jean, P.-Y.

C.-L. Pan, P.-Y. Jean, “Improved Performance of an Internal Mirror He–Ne Laser (λ = 633 nm) Stabilized by the Total Power Method,” Jpn. J. Appl. Phys. 26, 1384 (1987).
[CrossRef]

C.-L. Pan, P.-Y. Jean, “Stabilization of Internal-Mirror He–Ne Lasers,” Appl. Opt. 25, 2126 (1986).
[CrossRef] [PubMed]

Niebauer, T. M.

Ogiwara, A.

A. Sasaki, A. Ogiwara, “He–Ne Laser-Beam Deviation with Thermal Distortion,” Rev. Laser Eng. 14, 946 (1986), in Japanese.
[CrossRef]

Pan, C.-L.

C.-L. Pan, P.-Y. Jean, “Improved Performance of an Internal Mirror He–Ne Laser (λ = 633 nm) Stabilized by the Total Power Method,” Jpn. J. Appl. Phys. 26, 1384 (1987).
[CrossRef]

C.-L. Pan, P.-Y. Jean, “Stabilization of Internal-Mirror He–Ne Lasers,” Appl. Opt. 25, 2126 (1986).
[CrossRef] [PubMed]

Sasaki, A.

A. Sasaki, A. Ogiwara, “He–Ne Laser-Beam Deviation with Thermal Distortion,” Rev. Laser Eng. 14, 946 (1986), in Japanese.
[CrossRef]

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous Output-and Frequency-Stabilization and Single-Frequency Operation of an Internal-Mirror He–Ne Laser by Controlling by the Discharge Current,” Jpn. J. Appl. Phys. 23, 593 (1984).
[CrossRef]

A. Sasaki, “A Simple Method for Single-Frequency Operation and Amplitude- and Frequency-Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 22, 1538 (1983).
[CrossRef]

A. Sasaki, T. Hayashi, “Amplitude and Frequency Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 21, 1455 (1982).
[CrossRef]

Seta, K.

K. Seta, S. Iwasaki, “Frequency Stabilization of a HeNe Laser Using a Thin Film Heater Coated on the Laser Tube,” Opt. Commun. 55, 367 (1985).
[CrossRef]

Ushimaru, S.

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous Output-and Frequency-Stabilization and Single-Frequency Operation of an Internal-Mirror He–Ne Laser by Controlling by the Discharge Current,” Jpn. J. Appl. Phys. 23, 593 (1984).
[CrossRef]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (4)

A. Sasaki, T. Hayashi, “Amplitude and Frequency Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 21, 1455 (1982).
[CrossRef]

A. Sasaki, “A Simple Method for Single-Frequency Operation and Amplitude- and Frequency-Stabilization of an Internal-Mirror He–Ne Laser,” Jpn. J. Appl. Phys. 22, 1538 (1983).
[CrossRef]

A. Sasaki, S. Ushimaru, T. Hayashi, “Simultaneous Output-and Frequency-Stabilization and Single-Frequency Operation of an Internal-Mirror He–Ne Laser by Controlling by the Discharge Current,” Jpn. J. Appl. Phys. 23, 593 (1984).
[CrossRef]

C.-L. Pan, P.-Y. Jean, “Improved Performance of an Internal Mirror He–Ne Laser (λ = 633 nm) Stabilized by the Total Power Method,” Jpn. J. Appl. Phys. 26, 1384 (1987).
[CrossRef]

Opt. Commun. (1)

K. Seta, S. Iwasaki, “Frequency Stabilization of a HeNe Laser Using a Thin Film Heater Coated on the Laser Tube,” Opt. Commun. 55, 367 (1985).
[CrossRef]

Precis. Eng. (1)

D. Dorsey, R. J. Hocken, M. Horowitz, “A Low Cost Laser Interferometer System for Machine Tool Applications,” Precis. Eng. 5, 29 (1983).
[CrossRef]

Rev. Laser Eng. (1)

A. Sasaki, A. Ogiwara, “He–Ne Laser-Beam Deviation with Thermal Distortion,” Rev. Laser Eng. 14, 946 (1986), in Japanese.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for stabilization: PS, silicon photodiode (HTV S1336-8BK); OP, operational amplifier (LF356); DA, differential amplifier (AD521); GW, glass wedge; ZD, temperature- stabilized Zener diode (LM399).

Fig. 2
Fig. 2

Typical result of amplitude and frequency stabilization. The preheating time is ~26 min.

Fig. 3
Fig. 3

Long-term stability of amplitude and frequency as a function of time.

Metrics