Abstract

Interferometry based on double exposure Fourier transform holography in photorefractive crystals is applied for visualization of aerodynamic flow fields. The interferograms obtained are of similar quality as those produced using holographic film but with greatly simplified procedures. The results presented are obtained using a high-power cw argon laser and iron doped lithium niobate crystals. The angular characteristics of the Fourier transform data holograms are studied.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, “Photorefractive Effect,” Opt. Eng. 17, 470 (1978).
  2. R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
    [CrossRef]
  3. J. P. Huignard, J. P. Herriau, “Real-Time Double-Exposure Interferometry with Bi12SiO20 Crystals in Transverse Electro-optic Configuration,” Appl. Opt. 16, 1807 (1977).
    [CrossRef] [PubMed]
  4. A. Marrakchi, J. P. Herriau, J. P. Huignard, “Real-Time Holographic Interferometry with Photorefractive Bi12SiO20 Crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 353, 24 (1982).
  5. J. P. Huignard, J. P. Herriau, T. Valentin, “Time Average Holographic Interferometry with Photoconductive Electrooptic Bi12SiO20 Crystals,” Appl. Opt. 16, 2796 (1977).
    [CrossRef] [PubMed]
  6. Y. H. Ja, “Real-Time Double-Exposure Holographic Interferometry in Four-Wave Mixing with Photorefractive Bi12GeO20 Crystals,” Appl. Opt. 21, 3230 (1982).
    [CrossRef] [PubMed]
  7. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

1987 (1)

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
[CrossRef]

1982 (2)

A. Marrakchi, J. P. Herriau, J. P. Huignard, “Real-Time Holographic Interferometry with Photorefractive Bi12SiO20 Crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 353, 24 (1982).

Y. H. Ja, “Real-Time Double-Exposure Holographic Interferometry in Four-Wave Mixing with Photorefractive Bi12GeO20 Crystals,” Appl. Opt. 21, 3230 (1982).
[CrossRef] [PubMed]

1978 (1)

A. M. Glass, “Photorefractive Effect,” Opt. Eng. 17, 470 (1978).

1977 (2)

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Black, T. D.

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
[CrossRef]

Glass, A. M.

A. M. Glass, “Photorefractive Effect,” Opt. Eng. 17, 470 (1978).

Herriau, J. P.

Huignard, J. P.

Ja, Y. H.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Magnusson, R.

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
[CrossRef]

Marrakchi, A.

A. Marrakchi, J. P. Herriau, J. P. Huignard, “Real-Time Holographic Interferometry with Photorefractive Bi12SiO20 Crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 353, 24 (1982).

Mitchell, J. H.

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
[CrossRef]

Valentin, T.

Wilson, D. R.

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Magnusson, J. H. Mitchell, T. D. Black, D. R. Wilson, “Holographic Interferometry Using Iron-Doped Lithium Niobate,” Appl. Phys. Lett. 51, 81 (1987).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Opt. Eng. (1)

A. M. Glass, “Photorefractive Effect,” Opt. Eng. 17, 470 (1978).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. Marrakchi, J. P. Herriau, J. P. Huignard, “Real-Time Holographic Interferometry with Photorefractive Bi12SiO20 Crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 353, 24 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental system.

Fig. 2
Fig. 2

Interferogram of the flow field in the wind tunnel. The object is circularly symmetric with a ball tip. The pressure is 220 psi.

Fig. 3
Fig. 3

Similar to Fig. 2 but with 270-psi pressure.

Fig. 4
Fig. 4

Similar to Fig. 2 but at 320 psi.

Fig. 5
Fig. 5

Interferogram corresponding to the thirteenth angularly multiplexed double exposure hologram in a stack storing a sequence of flow field visualization results. The object is the same as that in Fig. 2, and the angular separation is Δθ′ = 0.5°.

Fig. 6
Fig. 6

Angularly multiplexed double exposure holograms. The diffraction efficiency vs the (external) readout angle is shown. The crystal thickness is 1.6 mm.

Fig. 7
Fig. 7

Angular selectivity of a single double exposure hologram recorded in the crystal used in Fig. 6.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = sin 2 [ ( γ 2 + ξ 2 ) 1 / 2 ] / ( 1 + ξ 2 / γ 2 ) ,

Metrics