Abstract

Particulate films, consisting of a 3-D arrangement of ultrafine Au or Ag particles with diameters of 8–20 nm, were prepared using the gas evaporation technique. As a consequence of the low packing density of the particles, films with a thickness of ~4 μm show very low reflectivities of <3% in the wavelength range of 300–1000 nm, causing high absorption of incident light. Additionally the sintering temperature of the ultrafine particles is very low (~350°C for Au). So a drastic altering of the optical properties of the particulate films is observed when irradiated by a laser. A sensitive optical recording medium with an adjustable reflectivity can be realized using a two-layer configuration with a reflector layer covered by a thin ~0.5-μm particulate Au film. Particulate Au or Ag films can also be used for photographic applications.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bell, Materials for High Density Optical Data Storage (CRC Press, Cleveland, 1985).
  2. W. Lee, “Thin Films for Optical Data Storage,” J. Vac. Sci. Technol. A 3, 640 (1984).
    [CrossRef]
  3. A. Huijser, “Optical Recording,” Physica B 127, 90 (1984).
    [CrossRef]
  4. W. Romanowskia, S. Engels, Hochdisperse Metalle (Verlag Chemie, Weinheim, 1982).
  5. F. Parmigani, G. Samoggia, G. Ferraris, “Optical Properties of Sputtered Gold Clusters,” J. Appl. Phys. 57, 2524 (1985).
    [CrossRef]
  6. J. Drexler, “Drexon Optical Memory Media for Laser Recording and Archival Data Storage,” J. Vac. Sci. Technol. 18, 87 (1981).
    [CrossRef]
  7. Y. Asano, “Metal-Containing Plasma-Polymerized Films,” Thin Solid Films 105, 1 (1983).
    [CrossRef]
  8. A. Shibukawa, “Indium-Silicon Dioxide Cermet Films for Optical Recording,” Appl. Opt. 20, 3844 (1981).
    [CrossRef]
  9. J. Apfel, “The Optical Model of a Trilayer Incorporating on Island Metal Film Recording Layer,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 104 (1983);V. Jipson, “The Writing Mechanism for Discontiuous Metal Films, Proc. Soc. Photo-Opt. Instrum. Eng. 420, 344 (1983).
  10. C. Granqvist, R. Buhrman, “Ultrafine Metal Particles,” J. Appl. Phys. 47, 2200 (1976).
    [CrossRef]
  11. “A Method and an Apparatus for Manufacturing Fine Powders of Metal or Alloy,” Great Britain Pat. 1,307,941 (1973).
  12. D. Mattox, G. Kominiak, “Deposition of Semiconductor Films with High Solar Absorptivity,” J. Vac. Sci. Technol. 12, 182 (1975).
    [CrossRef]
  13. A. Abe, H. Ogawa, M. Nishikawa, “Method of and Apparatus for Manufactoring Ultrafine Particle Film,” U.S. Pat. 4,395,440 (1981).
  14. S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of Ultrafine Metal Particles by Gas Evaporation Technique I. Aluminium in Helium,” Jpn. J. Appl. Phys. 12, 1675 (1973).
    [CrossRef]
  15. R. Honig, “Vapor Pressure Data for the Solid and Liquid Elements,” RCA Rev. 23, 567 (1962).
  16. R. Landauer, “Electrical Transport and Optical Properties on Inhomogeneous Media,” AIP Conf. Proc. 40, 2 (1978).
    [CrossRef]
  17. U. Kreibig, “Systems of Small Metal Particles: Optical Properties and Their Structure Dependences,” Z. Phys. D 3, 239 (1986).
    [CrossRef]
  18. A. Werner, H. Hibst, K. Schomann, “Irreversible Optical Medium for Information Storage, and Its Production,” U.S. Patent 4,670,332 (1987).
  19. S. Y. Suh, D. A. Snyder, D. L. Anderson, “Writing Process in Ablative Optical Recording,” Appl. Opt. 24, 868, (1985).
    [CrossRef] [PubMed]

1986 (1)

U. Kreibig, “Systems of Small Metal Particles: Optical Properties and Their Structure Dependences,” Z. Phys. D 3, 239 (1986).
[CrossRef]

1985 (2)

S. Y. Suh, D. A. Snyder, D. L. Anderson, “Writing Process in Ablative Optical Recording,” Appl. Opt. 24, 868, (1985).
[CrossRef] [PubMed]

F. Parmigani, G. Samoggia, G. Ferraris, “Optical Properties of Sputtered Gold Clusters,” J. Appl. Phys. 57, 2524 (1985).
[CrossRef]

1984 (2)

W. Lee, “Thin Films for Optical Data Storage,” J. Vac. Sci. Technol. A 3, 640 (1984).
[CrossRef]

A. Huijser, “Optical Recording,” Physica B 127, 90 (1984).
[CrossRef]

1983 (2)

J. Apfel, “The Optical Model of a Trilayer Incorporating on Island Metal Film Recording Layer,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 104 (1983);V. Jipson, “The Writing Mechanism for Discontiuous Metal Films, Proc. Soc. Photo-Opt. Instrum. Eng. 420, 344 (1983).

Y. Asano, “Metal-Containing Plasma-Polymerized Films,” Thin Solid Films 105, 1 (1983).
[CrossRef]

1981 (2)

A. Shibukawa, “Indium-Silicon Dioxide Cermet Films for Optical Recording,” Appl. Opt. 20, 3844 (1981).
[CrossRef]

J. Drexler, “Drexon Optical Memory Media for Laser Recording and Archival Data Storage,” J. Vac. Sci. Technol. 18, 87 (1981).
[CrossRef]

1978 (1)

R. Landauer, “Electrical Transport and Optical Properties on Inhomogeneous Media,” AIP Conf. Proc. 40, 2 (1978).
[CrossRef]

1976 (1)

C. Granqvist, R. Buhrman, “Ultrafine Metal Particles,” J. Appl. Phys. 47, 2200 (1976).
[CrossRef]

1975 (1)

D. Mattox, G. Kominiak, “Deposition of Semiconductor Films with High Solar Absorptivity,” J. Vac. Sci. Technol. 12, 182 (1975).
[CrossRef]

1973 (1)

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of Ultrafine Metal Particles by Gas Evaporation Technique I. Aluminium in Helium,” Jpn. J. Appl. Phys. 12, 1675 (1973).
[CrossRef]

1962 (1)

R. Honig, “Vapor Pressure Data for the Solid and Liquid Elements,” RCA Rev. 23, 567 (1962).

Abe, A.

A. Abe, H. Ogawa, M. Nishikawa, “Method of and Apparatus for Manufactoring Ultrafine Particle Film,” U.S. Pat. 4,395,440 (1981).

Anderson, D. L.

Apfel, J.

J. Apfel, “The Optical Model of a Trilayer Incorporating on Island Metal Film Recording Layer,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 104 (1983);V. Jipson, “The Writing Mechanism for Discontiuous Metal Films, Proc. Soc. Photo-Opt. Instrum. Eng. 420, 344 (1983).

Asano, Y.

Y. Asano, “Metal-Containing Plasma-Polymerized Films,” Thin Solid Films 105, 1 (1983).
[CrossRef]

Bell, A.

A. Bell, Materials for High Density Optical Data Storage (CRC Press, Cleveland, 1985).

Buhrman, R.

C. Granqvist, R. Buhrman, “Ultrafine Metal Particles,” J. Appl. Phys. 47, 2200 (1976).
[CrossRef]

Drexler, J.

J. Drexler, “Drexon Optical Memory Media for Laser Recording and Archival Data Storage,” J. Vac. Sci. Technol. 18, 87 (1981).
[CrossRef]

Engels, S.

W. Romanowskia, S. Engels, Hochdisperse Metalle (Verlag Chemie, Weinheim, 1982).

Ferraris, G.

F. Parmigani, G. Samoggia, G. Ferraris, “Optical Properties of Sputtered Gold Clusters,” J. Appl. Phys. 57, 2524 (1985).
[CrossRef]

Granqvist, C.

C. Granqvist, R. Buhrman, “Ultrafine Metal Particles,” J. Appl. Phys. 47, 2200 (1976).
[CrossRef]

Hibst, H.

A. Werner, H. Hibst, K. Schomann, “Irreversible Optical Medium for Information Storage, and Its Production,” U.S. Patent 4,670,332 (1987).

Honig, R.

R. Honig, “Vapor Pressure Data for the Solid and Liquid Elements,” RCA Rev. 23, 567 (1962).

Huijser, A.

A. Huijser, “Optical Recording,” Physica B 127, 90 (1984).
[CrossRef]

Kasukabe, S.

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of Ultrafine Metal Particles by Gas Evaporation Technique I. Aluminium in Helium,” Jpn. J. Appl. Phys. 12, 1675 (1973).
[CrossRef]

Kominiak, G.

D. Mattox, G. Kominiak, “Deposition of Semiconductor Films with High Solar Absorptivity,” J. Vac. Sci. Technol. 12, 182 (1975).
[CrossRef]

Kreibig, U.

U. Kreibig, “Systems of Small Metal Particles: Optical Properties and Their Structure Dependences,” Z. Phys. D 3, 239 (1986).
[CrossRef]

Landauer, R.

R. Landauer, “Electrical Transport and Optical Properties on Inhomogeneous Media,” AIP Conf. Proc. 40, 2 (1978).
[CrossRef]

Lee, W.

W. Lee, “Thin Films for Optical Data Storage,” J. Vac. Sci. Technol. A 3, 640 (1984).
[CrossRef]

Mattox, D.

D. Mattox, G. Kominiak, “Deposition of Semiconductor Films with High Solar Absorptivity,” J. Vac. Sci. Technol. 12, 182 (1975).
[CrossRef]

Nishikawa, M.

A. Abe, H. Ogawa, M. Nishikawa, “Method of and Apparatus for Manufactoring Ultrafine Particle Film,” U.S. Pat. 4,395,440 (1981).

Ogawa, H.

A. Abe, H. Ogawa, M. Nishikawa, “Method of and Apparatus for Manufactoring Ultrafine Particle Film,” U.S. Pat. 4,395,440 (1981).

Parmigani, F.

F. Parmigani, G. Samoggia, G. Ferraris, “Optical Properties of Sputtered Gold Clusters,” J. Appl. Phys. 57, 2524 (1985).
[CrossRef]

Romanowskia, W.

W. Romanowskia, S. Engels, Hochdisperse Metalle (Verlag Chemie, Weinheim, 1982).

Samoggia, G.

F. Parmigani, G. Samoggia, G. Ferraris, “Optical Properties of Sputtered Gold Clusters,” J. Appl. Phys. 57, 2524 (1985).
[CrossRef]

Schomann, K.

A. Werner, H. Hibst, K. Schomann, “Irreversible Optical Medium for Information Storage, and Its Production,” U.S. Patent 4,670,332 (1987).

Shibukawa, A.

A. Shibukawa, “Indium-Silicon Dioxide Cermet Films for Optical Recording,” Appl. Opt. 20, 3844 (1981).
[CrossRef]

Snyder, D. A.

Suh, S. Y.

Uyeda, R.

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of Ultrafine Metal Particles by Gas Evaporation Technique I. Aluminium in Helium,” Jpn. J. Appl. Phys. 12, 1675 (1973).
[CrossRef]

Werner, A.

A. Werner, H. Hibst, K. Schomann, “Irreversible Optical Medium for Information Storage, and Its Production,” U.S. Patent 4,670,332 (1987).

Yatsuya, S.

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of Ultrafine Metal Particles by Gas Evaporation Technique I. Aluminium in Helium,” Jpn. J. Appl. Phys. 12, 1675 (1973).
[CrossRef]

AIP Conf. Proc. (1)

R. Landauer, “Electrical Transport and Optical Properties on Inhomogeneous Media,” AIP Conf. Proc. 40, 2 (1978).
[CrossRef]

Appl. Opt. (2)

S. Y. Suh, D. A. Snyder, D. L. Anderson, “Writing Process in Ablative Optical Recording,” Appl. Opt. 24, 868, (1985).
[CrossRef] [PubMed]

A. Shibukawa, “Indium-Silicon Dioxide Cermet Films for Optical Recording,” Appl. Opt. 20, 3844 (1981).
[CrossRef]

J. Appl. Phys. (2)

C. Granqvist, R. Buhrman, “Ultrafine Metal Particles,” J. Appl. Phys. 47, 2200 (1976).
[CrossRef]

F. Parmigani, G. Samoggia, G. Ferraris, “Optical Properties of Sputtered Gold Clusters,” J. Appl. Phys. 57, 2524 (1985).
[CrossRef]

J. Vac. Sci. Technol. (2)

J. Drexler, “Drexon Optical Memory Media for Laser Recording and Archival Data Storage,” J. Vac. Sci. Technol. 18, 87 (1981).
[CrossRef]

D. Mattox, G. Kominiak, “Deposition of Semiconductor Films with High Solar Absorptivity,” J. Vac. Sci. Technol. 12, 182 (1975).
[CrossRef]

J. Vac. Sci. Technol. A (1)

W. Lee, “Thin Films for Optical Data Storage,” J. Vac. Sci. Technol. A 3, 640 (1984).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Yatsuya, S. Kasukabe, R. Uyeda, “Formation of Ultrafine Metal Particles by Gas Evaporation Technique I. Aluminium in Helium,” Jpn. J. Appl. Phys. 12, 1675 (1973).
[CrossRef]

Physica B (1)

A. Huijser, “Optical Recording,” Physica B 127, 90 (1984).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Apfel, “The Optical Model of a Trilayer Incorporating on Island Metal Film Recording Layer,” Proc. Soc. Photo-Opt. Instrum. Eng. 420, 104 (1983);V. Jipson, “The Writing Mechanism for Discontiuous Metal Films, Proc. Soc. Photo-Opt. Instrum. Eng. 420, 344 (1983).

RCA Rev. (1)

R. Honig, “Vapor Pressure Data for the Solid and Liquid Elements,” RCA Rev. 23, 567 (1962).

Thin Solid Films (1)

Y. Asano, “Metal-Containing Plasma-Polymerized Films,” Thin Solid Films 105, 1 (1983).
[CrossRef]

Z. Phys. D (1)

U. Kreibig, “Systems of Small Metal Particles: Optical Properties and Their Structure Dependences,” Z. Phys. D 3, 239 (1986).
[CrossRef]

Other (5)

A. Werner, H. Hibst, K. Schomann, “Irreversible Optical Medium for Information Storage, and Its Production,” U.S. Patent 4,670,332 (1987).

A. Bell, Materials for High Density Optical Data Storage (CRC Press, Cleveland, 1985).

A. Abe, H. Ogawa, M. Nishikawa, “Method of and Apparatus for Manufactoring Ultrafine Particle Film,” U.S. Pat. 4,395,440 (1981).

W. Romanowskia, S. Engels, Hochdisperse Metalle (Verlag Chemie, Weinheim, 1982).

“A Method and an Apparatus for Manufacturing Fine Powders of Metal or Alloy,” Great Britain Pat. 1,307,941 (1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Evaporation unit for the preparation of particulate metal films.

Fig. 2
Fig. 2

Diameter d of Au and Ag particles as a function of Ar pressure p. The transmission electron micrographs show the Au particles at pAr = 3 mbar and pAr = 30 mbar.

Fig. 3
Fig. 3

(a) Diameter of grains as a function of the thickness of particulate Ag (+) and Au (O) films d made at pAr = 12 mbar. (b) Scanning electron micrographs of particulate Ag films with a film thickness of 1.5, 3, and 4 μm.

Fig. 4
Fig. 4

Porosity of the particulate Au and Ag films as a function of Ar pressure. Porosity = Vf/Vp, Vf = volume of the film, Vp = volume of all the particles in the film.

Fig. 5
Fig. 5

Reflectivity of homogeneous Au and Ag films with a thickness of 100 nm (___) as well as of particulate Au and Ag films (- - -) as a function of wavelength. The particulate films were made at pAr = 12 mbar. The mass of these films is equivalent to a 100-nm thick homogeneous film.

Fig. 6
Fig. 6

Thickness d of a particulate Au film (pAr = 12 mbar) as a function of the annealing temperature T. The scanning electron micrographs show the surface of the film before and after sintering.

Fig. 7
Fig. 7

Temperature or a black layer (soot) on a glass substrate as a function of temperature of the evaporation source: +, substrate 40 mm above the source (position 2 in Fig. 1); •, substrate 40 mm below the source (position 1 in Fig. 1); O, value of Abe et al.13 where the substrate is 40 mm above the source.

Fig. 8
Fig. 8

Particulate Au film (pAr = 12 mbar) exposed to a flashlight. A is the distance between flashlight and particulate film, (a) Schematic cross section of the film after exposure: d0 is the thickness of the unexposed film; d is the thickness after exposure. (b) Light micrographs of the film surface. (c) d/d0 as a function of A (d0 = 5 μm).

Fig. 9
Fig. 9

Electrical resistance of particulate Au films before exposure (RB) as a function of the resistance after exposure (RA) to a flashlight. The films were made at pAr = 5 mbar (•), 10 mbar (+), and 15 mbar (O).

Fig. 10
Fig. 10

Copies of a slide (a) made by exposure of particulate Ag (b) and Au (c) films using a flashlight.

Fig. 11
Fig. 11

(a) Light micrographs and (b) and (c) scanning electron micrographs of spots written on a 4-μm thick particulate Au film (pAr = 10 mbar). The writing energy was 4 nJ/spot (He–Ne laser, λ = 633 nm).

Fig. 12
Fig. 12

Reflectivity of an Ag reflector as well as of a double layer system of an Ag reflector covered by a particulate Au film (pAr = 10 mbar) as a function of wavelength: ___, 100-nm thick Ag reflector; -.-, Ag reflector plus a very thin (~0.1-μm) particulate Au film; - - -, Ag reflector plus a thin (~0.5-μm) particulate Au film.

Fig. 13
Fig. 13

(a) Light micrograph and (b) and (c) scanning electron micrographs of spots written on a thin (~0.5-μm) particulate Au film (pAr = 10 mbar) covering an Ag reflector. The writing energy was 1.8 nJ/spot (semiconductor diode laser, λ = 860 nm).

Fig. 14
Fig. 14

Signal-to-noise ratio of the recording layer described in Fig. 13 as a function of laser pulse length τ and laser energy/spot ratio (laser power = 6 mW on the surface of the recording layer).

Metrics